Algorithms and Games

Michel de Rougemont University Paris II & IRIF CNRS

Games

- 1. Games for Logic
 - Elementary equivalence
 - Logic and Complexity
 - Probabilistic method
- 2. Strategic games
- 3. Large Language models for Games
 - Transformers
 - Learning strategies and Chain of thought
 - Probing

1. Games for Logic

- Classes of Finite structures:
 - Words $\{U_n = (\{1, 2, ..., n\}, P, <): n = 1, 2...\}$
 - Graphs $\{G_n = (\{1, 2, \dots n\}, E\}: n = 1, 2 \dots \}$
 - Graphs with 2 distinguished elements $\{G_n = (\{1, 2, \dots n\}, E, s t): n = 1, 2 \dots \}$
- Graph property P : degree 2, Connexity,....
 - Definable in some Logic L : $\forall n \ G_n \models \varphi() \leftrightarrow G_n \models P$
- Logical formulas
 - First order Logic $\exists x \forall y \ \mathsf{E}(x,y)$ Monadic Second order Logic, $\sum_{i=1}^{1}$

formulas

 $\exists U \exists x U(x) \cap [\forall y U(y) \rightarrow E(x,y)]$

1. Games for Logic

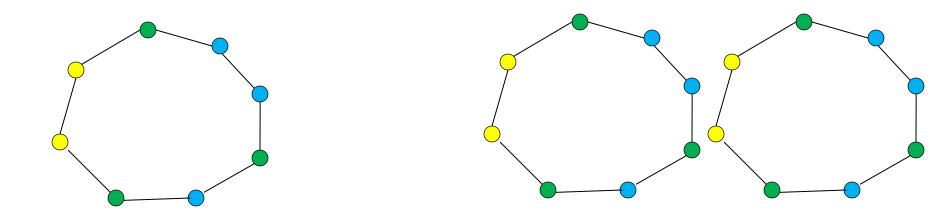
Elementary Equivalence: $U \approx V$ if $U \models \varphi \leftrightarrow V \models \varphi$

Ehrenfeucht-Fraisse games (1950's):

- 2 Players: Spoiler and Duplicator
- r-pebbles, winning condition for Duplicator: partial r-isomorphism
- P is First-order definable if there exists r, such that for all G_0 in P and G_1 in not P, Spoiler has a winning strategy.
- P is not F.O. definable if for all r, there exists G_0 in P and G_1 in not P, Duplicator has a winning strategy

Games for Logic

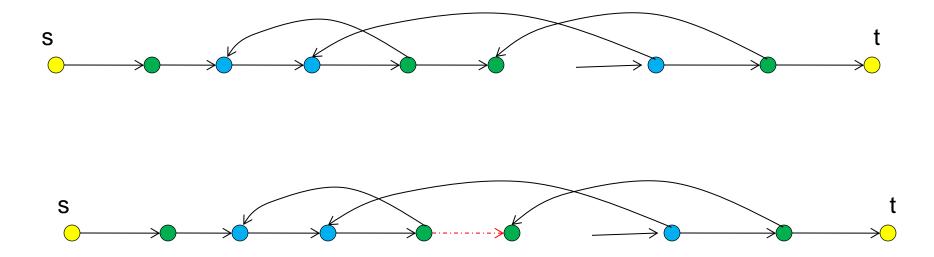
Ehrenfeucht-Fraisse games:


- P: graph of degree 2
- G₀ and G₁ : Spoiler, Duplicator place pebbles alternatively
- r=4
- Spoiler wins (partial isomorphism of the substructures)

Games for Monadic 2nd order Logic

Monadic existential 2nd order games:

- Duplicator selects G_0 and G_1
- Spoiler colors G_0 with k colors (k=3), Duplicator colors G_1
- They play EF(r)
- P: Connectivity



P: s-t Connexity

- Algorithms:
 - Easy on undirected graphs (Random walk starting with s: detects t with w.h.)
 - Hard on directed graphs
- \sum_{1}^{1} definable on undirected graphs
- Challenge: not Σ_1^1 definable on undirected graphs
- Ajtai-Fagin games (1995):

Ajtai Fagin games for Monadic 2nd order Logic

- Duplicator selects G₀ and Spoiler colors G₀ with k colors
- Duplicator selects G₁ and colors G₁
- They play EF(r)
- Game easier to win for Duplicator
- Probabilistic method: back edges probabilistic

Probabilistic Method

- G_0 and G_1 are probabilistic graphs $Prob[Duplicator wins] > \delta > 0$
- Conclusion 1: there exists G₀ and G₁ such that Duplicator wins the Ajtai-Fagin games.
- Conclusion 2: directed s-t Connexity not monadic

\sum_{1}^{1} definable

Important technique in TCS

Descriptive Complexity

- Complexity classes: L, NL, P, NP, coNP,#P
- Logics for each classes: NP = \sum_{1}^{1}
- Variations of the games for each complexity class
- Problem: worst-case complexity

Some NP complete problems are easy if the graphs follow some statistical hypothesis.

2 Strategic games

2 players, Utility matrices, mixed strategies σ , μ Example: stone, scissor, well decisions for the 2 players

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad B = -A$$

$$Gain(I) = \sigma^{t} A \mu \qquad I \quad Maximizes t$$

 $Gain(I) = \sigma^{t}.A.\mu \qquad I \qquad Maximizes the Gain$ $Max_{\sigma} Min_{\mu} \sigma^{t}.A.\mu$

Solution 1: Linear programs to find σ and μ (Equilibria) Solution 2: Learn σ : Best response to stat(II) \rightarrow Equilibria Fictitious player

Strategic games with N players

Utility tensors $A(x_1, ..., x_N)$

- Nash Equilibria (hard to compute)
- Algorithmic game theory
 - How do we learn « good strategies »

(Fictitious player converges to Nash equibria on 0-1 games)

- Non worst-case complexity
- RL: Reinforcement learning
- Given an equilibrium, what is the game?

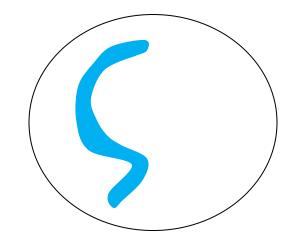
Learning strategies for alternate games

Chess (joint work Luc Pommeret)

 Learning phase: access 10⁶ runs in format PGN (20 tokens)

1. e4 e5 2. Nf3 Nc6 ...

2 Generation of the next token t_k according to $P(t_k | t_1, t_2, ..., t_{k-1})$ with a transformer


3. LLMs for Games

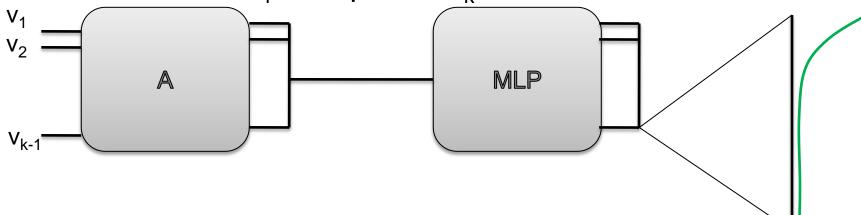
Key components of LLMs

- 1. Tokens
- 2. Transformers
- 3. RLHF and Chains of thought

Transformers

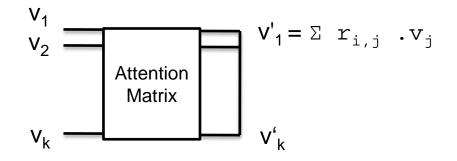
1. Representation of a distribution on text decomposed by tokens

2. Generation of t_k according to $P(t_k | t_1, t_2, \dots, t_{k-1})$


3. Attention + Multilayer Perceptron

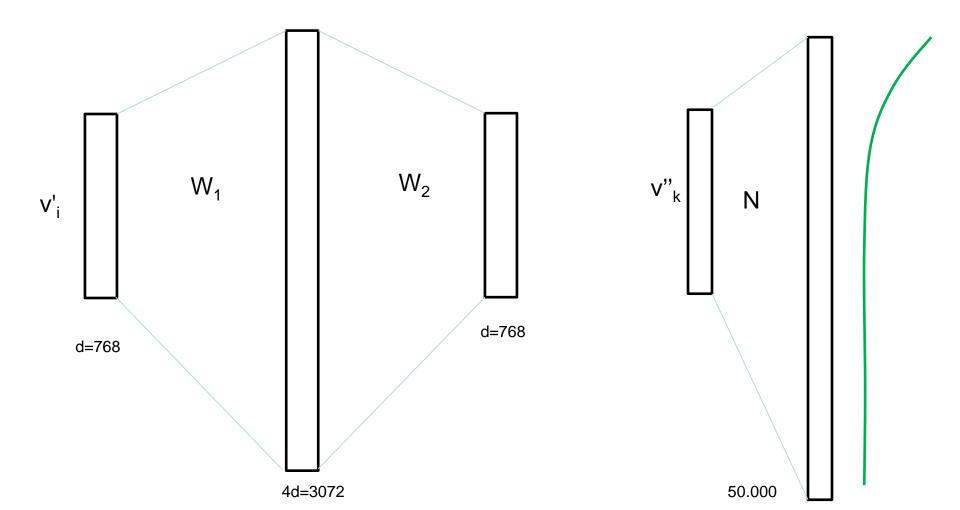
Transformers

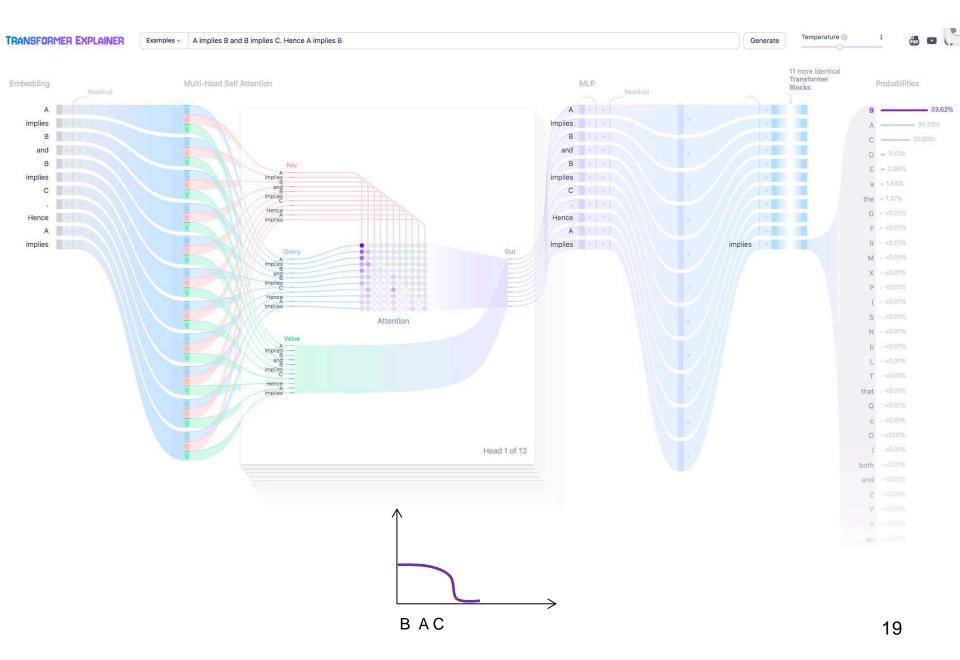
Each token t_i has an embedding $v_i \in R^d$ (d=768)


Attention Block A, Perceptron Block MLP

Transform the v_i and predict t_k

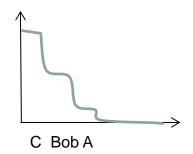
Transformers: input t_1 , t_2 ,...., t_{k-1} output: P ($t_k | t_1, t_2$,...., t_{k-1})


Attention: Q,K,V (d,d) matrices $v'_i = \sum_{j=1}^{k-1} r_{i,j} \cdot V \cdot v_j$ $r_{i,j} = Softmax((K \cdot v_i)^t, Q \cdot v_j)$

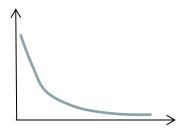

MLP

https://poloclub.github.io/transformer-explainer/

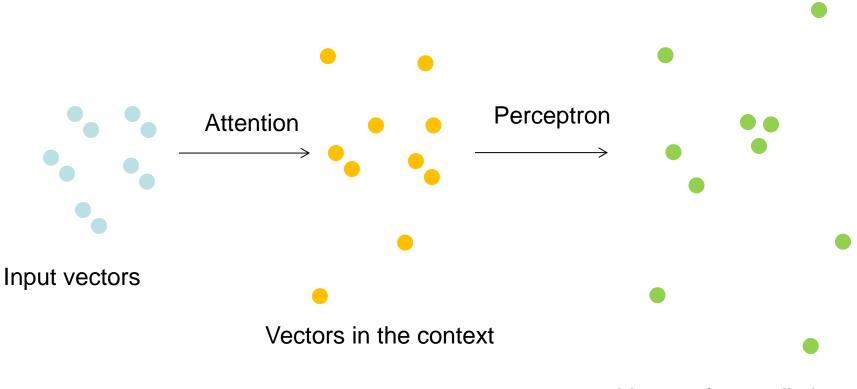
Perceptron Block MLB: W₁,W₂,N



A implies B and B implies C. Hence A implies



Deduction and Composition

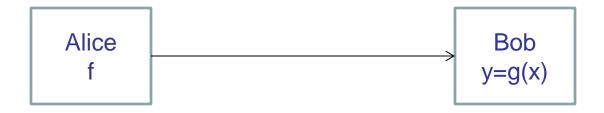

A implies Bob and Bob implies C. Hence A implies ?

f(1)=2, f(2)=3,g(1)=2, hence f(g(1))=?

Dynamics of the embeddings

Vectors for prediction

Composition by transformers: negative results


f(0)=3, f(1)=5, f(2)=7,.... g(0)=7, g(1)=2, g(2)=3,.... What is f(g(1))=?

On the limitations of the Transformer Architecture, Peng, Narayanan, Papadimitriou, Arxiv 2024

Composition by a Transformer is incorrect with high probability!!

Worst-case negative result.

Communication Complexity

One way complexity: Π is the length of Alice's message

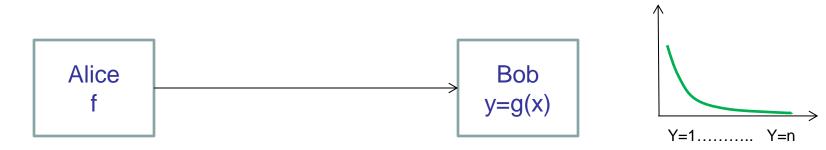
Index problem: Bob must compute f(y)

Alice must send n.log n bits

Worst-case complexity, i.e. y is uniform on {1...n}

Theorem (PNP 2024): If Alice sends (n.log n – R) bits than the Composition is incorrect with probability R/ n.log n !!

Information Complexity


Theorem: If Alice sends (n.log n – R) bits, than the Composition is incorrect with probability R/ n.log n !!

I(X; Y) = KL (P(X,Y) || P(X)*P(Y))= H(X)+H(Y) - H(X,Y)= H(X) - H(X|Y)

 $I(\Pi ; f(i^*) | i^*) < \Pi/n = \log n - R/n$

Fano Inequality: Assume we estimate X from Y, i.e. X'=F(Y) Error: $Prob[X' \neq X] = \delta$ Fano: $H(\delta) + \delta \cdot \log n > H(X | Y)$ Conclusion: $\delta > R/3n \cdot \log n$

Communication Complexity: non-worst case

Assume y is non uniform and the distribution is public

Alice sends $f(i_1)...f(i_p)$, most likely y to Bob Non worst-case complexity, i.e. y follows on $\{1...n\}$ If Alice sends O(1) bits, the Composition is correct with high

probability !!

Game strategy: Composition of moves

Chess: R(x,y) if $x \rightarrow y$ with a valid move Goal: iterate R: $x \rightarrow y_1 \rightarrow y_2 \dots \rightarrow y_n$

Observation: R composes with high probability

The Transformer defines a distribution $P(t_k | t_1, t_2, \dots, t_{k-1})$ k=20, n=10⁴, size 10⁸⁰

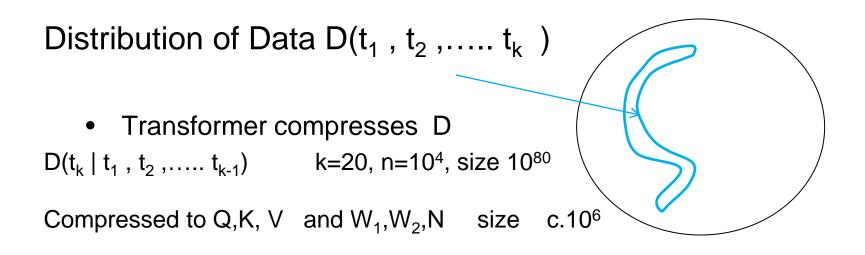
Compressed to Q,K, V and W_1, W_2, N size c.10⁶

Which classes of functions/relations compose?

Chain of Thought

A implies B and B implies C. Hence A implies?

ChatGPT 4.0 answers:


If A implies B, and B implies C, then logically A implies C. This reasoning is based on the **transitive property of implication** in propositional logic. Symbolically: $A \Rightarrow B \text{ and } B \Rightarrow C \Rightarrow A \Rightarrow C$

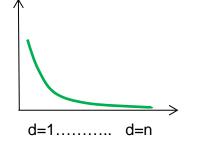
This means if A is true, C must also be true.

In general: chain of thought decomposes the answer.

Learn a distribution

Real Data are NOT worst-case

Logical interpretation

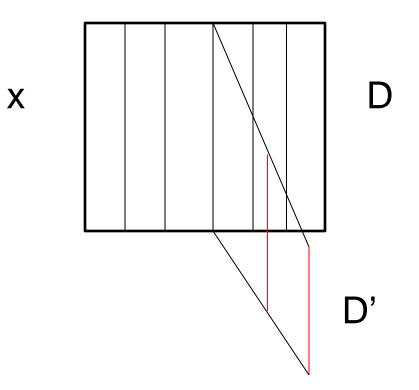

- 01- extension of ChatGPT, Chains of thought
- Deepmind mathematical engine

Algorithms for a property P on a Distribution D

A: Algorithm on D (Claire Mathieu, M dR : Large very dense subgraphs in a stream of edges, Network Science, 2022) Ω is the probabilistic space of the algorithm

$$\begin{array}{ll} x \in P \rightarrow & Prob_{\Omega} \left[A \ accepts \right] > 1 - \delta \\ x \ not \ in \ P \rightarrow & Prob_{D \ \Omega} \left[A \ rejects \right] > 1 - \delta \end{array}$$

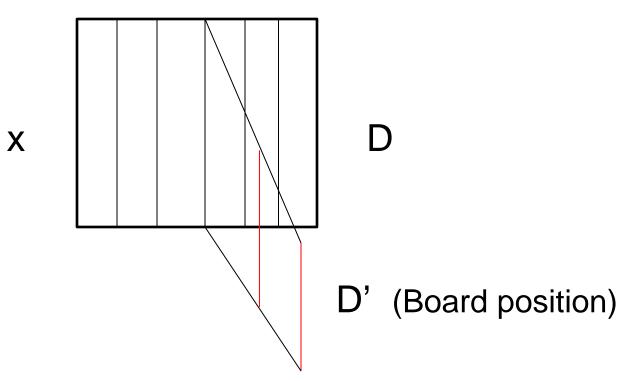
Example: Graphs with a power law Degree distribution.


P: Maxclique (NP-hard) is easy.

Emergent skills (by probing), also defined for D

Probing (Hewitt , Manning 2028)

Can a Neural network for D can also predict D'


Can syntax can be inferred from a Transformer ?

Probing in Chess

Transformer learnt from the runs: can we probe

- The board position?
- The ratio White/Black figures ?
- The ELO number

Extensions of LLMs

- Speech acts: Question → Answer
 Question → Comment, Question
- 2. Multimodal data (Large Action Models in Robotics)

Speech, text	
Vision	
Sensors	
Actions	

- 3. Generation/Verification

General Token

- Formal verifier (Lean, Coq)
- Probabilistic verifier

Conclusion

- 1. Descriptive Complexity = Worst case Complexity
- 2. Data as a distribution
 - Transfomers represent a distribution
 - Worst-case composition impossible
 - Relative composition possible
- 3. Logical interpretation of LLM's

References

1. Miklos Ajtai, Ronald Fagin, **Reachability is harder for directed than for undirected finite graphs**. Journal of Symbolic Logic, 55, pp. 113–150, 1992.

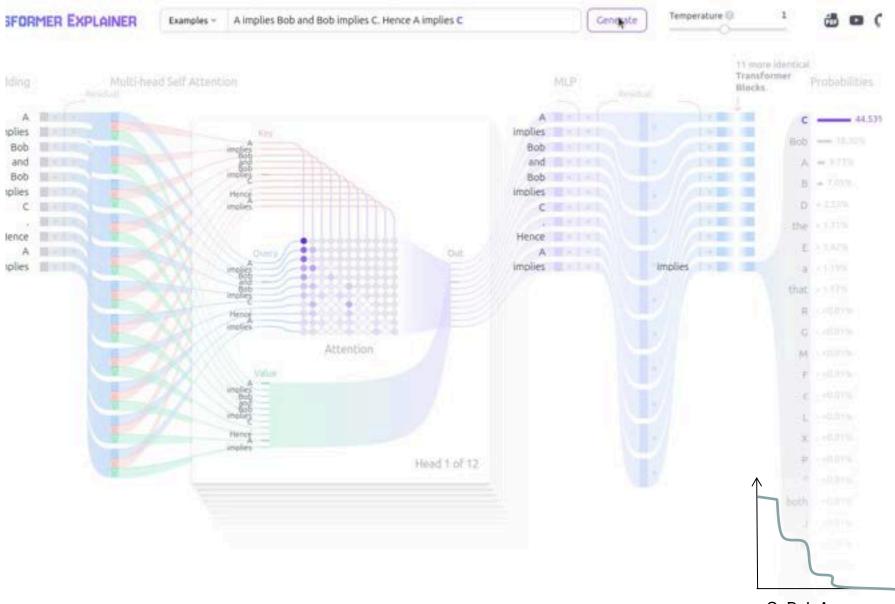
https://research.ibm.com/publications/reachability-is-harder-for-directed-than-for-undirected-finite-graphs

2. Julia Robinson, **An iterative method of solving a game**, Annals of Mathematics, 1951

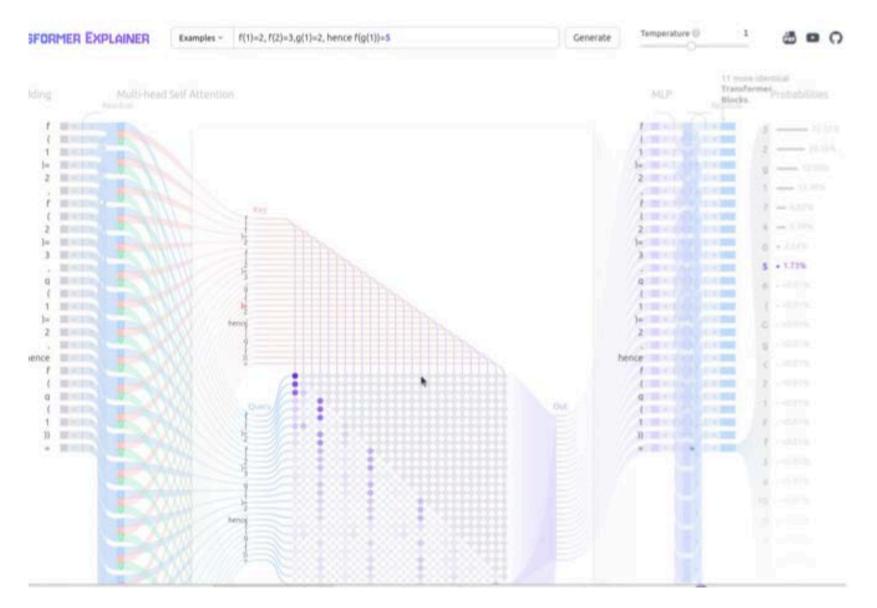
Fictitious play, converges slowly for 0-sum games

3. John Hewitt and Christopher D. Manning, **A Structural Probe for Finding Syntax in Word Representations,** 2018

Relative computation with Neural Networks


4. Claire Mathieu and Michel de Rougemont : Large very dense subgraphs in a stream of edges, Network Science, Cambridge University Press, 2022

Non worst-case algorithms on graphs


https://hal.science/hal-03112040/document

5. Transformers, ChatGPT, 01: Sparks & Embers, Debate Jan. 2025 https://simons.berkeley.edu/news/sparks-vs-embers

A implies Bob and Bob implies C. Hence A implies ?

f(1)=2, f(2)=3, g(1)=2, hence f(g(1))=?

