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Abstract—We associate a statistical vector to a trace and a
geometrical embedding to a Markov Decision Process, based
on a distance on words, and study basic Membership and
Equivalence problems. The Membership problem for a trace
w and a Markov Decision Process S decides if there exists
a strategy on S which generates with high probability traces
close to w. We prove that Membership of a trace is testable
and Equivalence of MDPs is polynomial time approximable.
For Probabilistic Automata, Membership is not testable, and
approximate Equivalence is undecidable. We give a class of
properties, based on results concerning the structure of the
tail sigma-field of a finite Markov chain, which characterizes
equivalent Markov Decision Processes in this context.

Keywords:Markov Decision Processes, Probabilistic Au-

tomata, State Action frequency, tail σ field, Property Testing,
Approximation.

I. INTRODUCTION

We consider probabilistic systems with both non deter-

ministic and probabilistic transitions, and basic questions

concerning their traces such as Statistical membership for

a given system and Equivalence of two systems which are

known to be hard in this context [3], [16]. We study their

approximation, based on Property testing, with a natural

distance dist on words, and show that Statistical member-

ship becomes testable and Equivalence polynomial time

computable in the size of the system, but remain hard for

Probabilistic Automata.

Property testing [22], [12] is a classical method to ap-

proximate decision problems, given a distance between

two inputs. An ε-tester for a property P on words, is a
randomized algorithm A which takes a word wn of size

n as input, and distinguishes with high probability between

wn satisfies P and wn ε-far from P. A property P is testable
if there exists a randomized algorithm such that for every

ε > 0, A (ε) is an ε-tester for P whose time complexity only
depends on ε , i.e. is independent of the size n.

Let S be an MDP (Markov Decision Process) of size

m, λ ≤ 1 a threshold value and 0 ≤ ε ≤ 1. Given an input
wn of size n, the Statistical membership decides if there

exists a strategy σ , which assigns decisions on each non
deterministic state, such that Probσ [dist(rn,wn) ≤ ε] ≥ λ ,
i.e. the probability to observe a trace rn which is ε-close
to wn is greater than λ . Although this problem is PSPACE-
hard inMax(m,n), we will show that it is testable, i.e. can be

approximated in time independent of n. We present a method

which generalizes the approach introduced in [11] for non

deterministic systems and considers the statistical behavior

of a system. It associates a statistical vector x to wn and a

convex set H (S ) of vectors to S in such a way that the

geometrical distance between x and H (S ) is close to the
distance between wn and the set of traces of S . We define a

distance between two MDPs S1 and S2 as the geometrical

distance between H (S1) and H (S2) and show how to
approximate it in polynomial time. A motivation for this

statistical analysis is to decide if there are runs with some

statistic constraints, such as the proportion of action a greater

than ten percent.

In [26], Tzeng studied the equivalence between two

probabilistic automata and proved that the exact equivalence

is in PTIME. This result was extended in [10], where the

authors study labeled Markov chains in a context close

to ours. Tzeng defined the approximate equivalence in a

natural way: two probabilistic automata are ε-close if for
all words w, the probabilities to be accepted are ε-close.
The undecidability of this problem is proved in [16]. In this

context, given a word wn, the membership simply decides

if ProbA[wn is accepted]≥ λ . We show that this property is
not testable.

There are many other approaches which associate dis-

tances to probabilistic systems. In [27], [9], distances gen-

eralize the classical probabilistic bisimulation between two

states and in [18], [24] the D̄ generalizes the Trace Equiva-

lence between two Markov chains. The distance introduced

differentiates systems which have a different long term

behavior, and is most relevant for systems which are not

supposed to stop. Our main results are: a generalization of

Derman’s theorem to higher order statistics (Theorem 1).

The Statistical membership on MDPs is testable (Theorem

2), whereas it is not testable (Theorem 3) for Probabilistic

Automata. Approximate Equivalence is polynomial time

computable for MDPs (Proposition 4) whereas it is un-

decidable for Probabilistic Automata. Ultimate properties

characterize the MDPs and the Markov chains at distance

0 (Theorem 5,6,7).

In section 2, we review the main definitions for Testers,

MDPs and State-Action Frequencies, Probabilistic Au-

tomata. In section 3, we generalize known results on MDPs

and statistics to higher order statistics. In section 4 we



define the Statistical membership and Equivalence problems,

and prove positive results for MDPs. In section 5 we

prove negative results for Probabilistic Automata. In section

6 we present a class of properties (ultimate properties),

which characterizes exactly the equivalence and simulation

relations between MDPs induced by the distance.

II. PRELIMINARIES

A. Testers and Statistics on words

An elementary operation on a word wn of size n on an

alphabet Σ is an insertion, a deletion, a substitution of a
single letter, or the move of a whole subword of w to another

position. The edit distance with moves dist(w,w′) between
w and w′ is the minimal number of elementary operations

performed on w to obtain w′, divided by max{|w|, |w′|} as
we only consider relative distances. The distance between w

and a language L, noted dist(w,L) is the minimum distance
dist(w,w′) for w′ ∈ L.

Definition 1 (Property Tester [22], [12]). Let ε > 0. An ε-
tester for a language L is a randomized algorithm A such

that, for all words w as input:

(1) If w ∈ L, then A accepts with probability at least 2/3,
(2) If w is ε-far from L, then A rejects with probability at

least 2/3.

Applying a polynomial number of times the algorithm

A on the same input w, and using a majority vote, the

2/3 bound could be replaced by any real number ρ > 1/2.
A query asks for the value of w[i] for some i. The query
complexity is the number of queries made to the word, and

the time complexity is the usual definition, where we assume

that arithmetic operations, a uniformly random choice of an

integer from any finite range not larger than the input size,

and a query to the input, take constant time. A language L

is testable, if there exists a randomized algorithm A such

that, for every real ε > 0 as input, A (ε) is an ε-tester of L,
and the query and time complexities of A depend only on

ε .
The ustatk(wn) vector of wn, of dimension |Σ|k, also
called the k-gram of wn is a vector whose u component,

ustatk(wn)[u] for u a word of size k, is the number of
different occurrences of u in wn divided by n− k+ 1, the
number of blocks of size k in wn. It is also the probability

to find u in a uniform random block. For instance, for k= 2
and Σ = {0,1} there are 4 possible words u of length k,
which we take in lexicographic order. For w6 = 101101∈ Σ∗

we get ustat2(w6) = (0,2/5,2/5,1/5). We will use the result
of [11], which relates dist to the L1 distance between ustat

vectors:

Proposition 1. For large enough words w,w′ ∈ Σ∗, ∀δ > 0,
for large enough k:

• if dist(w,w′) ≤ δ 2, then ||ustatk(w)−ustatk(w
′)||1 ≤ 7 ·

δ

• if ||ustatk(w)−ustatk(w
′)||1≤ δ , then dist(w,w′)≤ 7 ·δ

B. Markov Decision Processes and Probabilistic Automata

All the MDPs and automata are on a finite alphabet Σ. If
S is finite set, we write ∆(S) for the set of distributions on
S.

Definition 2. A Markov Decision Process (MDP) is a triple

S = (S,Σ,P) where S is a finite set of states, Σ is a set of
actions, and P : S×Σ×S→ [0;1] is the transition relation.
P(s,a,t), also written P(t|s,a), is the probability to arrive
in t in one step when the current state is s and action a∈ Σ
is chosen for the transition.

If action a is not allowed from state s, P(t|s,a) = 0 for
all t ∈ S. The initial state of the system is chosen randomly
according to an initial probability distribution α on its
state space. A history, or run, on S is a finite or infinite

alternating sequence of states and actions, which begins with

a state and ends with a state when finite. We write Ω∗ for the

set of finite histories, Ω for the set of infinite histories onS .

If n∈ N and r ∈ Ω we write r|n for the sequence of the first
n− 1 state action couples in r and the n-th state in r. The
trace Tr(r) of a run r is the sequence of actions. If n ∈ N,

Xn and Yn are the random variables on Ω which associate to
a run r its n-th state and its n-th action. A policy on S , see

[28], [23], is a function σ :Ω∗ →∆(Σ). A policy resolves the
non determinism of the system by choosing a distribution on

the set of available actions from the last state of the given

history. We write HR for the set of history dependent and

randomized policies. A policy is deterministic when for all

history h = (s1,a1, ..., ,ai−1,si) on S , σ(h) ∈ Σ. We write
HD for the set of history dependent deterministic policies.

If k ∈ N, a policy σ is said to have memory k if for
any history h = (s1,a1, ..., ,ai−1,si) of length at least k we
have σ((s1,a1, ..., ,ai−1,si)) = σ((si−k,ai−k, ..., ,ai−1,si)).
We write MR(k) for the set of randomized policies with
memory less than k. A policy is stationary, or memoryless, if

it has memory 0, i.e. for any history h= (s1,a1, ..., ,ai−1,si)
we have σ(h) = σ(si). We write SR for the set of stationary
randomized policies, and we write SD for the set of station-

ary deterministic policies.

A policy σ and an initial distribution α induce a prob-
ability distribution P

σ ,α on the σ -field F of Ω generated
by the cones Cρ = {r ∈ Ω | r|ρ | = ρ}, for ρ ∈ Ω∗,(see [5],

[28]). If the initial distribution α is concentrated on a state,
that is if there exists s ∈ S such that α(s) = 1, we may write
P

σ ,s instead of P
σ ,α .

Let S be an MDP and s be a state of S . The set

Leave(s) ⊆ Ω is the set of runs which do not cross s after a
finite number of steps. That is,

Leave(s) = {r ∈ Ω | ∃k ∈ N s.t. ∀l ≥ k Xl(r) 6= s}

Given a policy σ on S , the state s is said to be transient

under σ if P
σ ,s[Leave(s)] = 1. That is, s is transient for σ



if with probability one, after a finite number of steps, if the

system is initiated on s, the runs do not cross s.

As for Markov chains, the communication properties

between the states of an MDP is important. An MDP is

weakly communicating, [20], if the set of states can be

partitioned into a set of states that are accessible from each

other (i.e., for any two states s and s′ in that set, there exists

a policy under which there is a positive probability to reach

s′ from s), and a set S0 of states which are transient under all

policies. An MDP is communicating if this decomposition

can be done with an empty set S0.

For a general MDP, there is a decomposition [6] into

maximal disjoint end components (MECs) S1, ...,Sl of the
state space such that S = S0 ∪ S1 ∪ ... ∪ Sl , where S0 is
the set of states which are transient for any policy on

S . A MEC is a maximal closed subset Si of states such

that the underlying graph is strongly connected, and such

that once entered, there exists a policy σ which keeps the
associated run in Si forever. If T ⊆ S, Reach(T) is the
event: {r ∈ Ω|∃k ∈ N s.t. Xk(r) ∈ T}, which is a measurable
event [5], [28]. The maximal reachability problem [5], [7]

asks, given a set T ⊂ S of destination states, and an initial
distribution α on S, for:

MaxReachS (α,T ) = Supσ∈HR(S )P
α ,σ (Reach(T))

In [7], a polynomial time algorithm for MaxReachS (α,T )
is given, and the optimal policy σ is deterministic, and
computable in polynomial time as well.

A probabilistic automaton (PA), [21], is an MDP A with

a marked initial state si and an extra set of final states F ⊆ S,
usually given with a probability threshold λ ∈ [0;1] for the
acceptance condition. Given an input word wn ∈Σn, PA (wn)
is the probability to reach a state in F after reading wn, when

the system is initiated on si.

1) State-Action Frequencies: Statistics on runs for an

MDP, have been introduced in [17], [8], [20], [24] as random

variables for the empirical state-action frequency vectors. We

consider a run on an MDP with state space S as a sequence

of couples in S and Σ. The statistics of a run will be the
statistics taken on this alphabet.

Definition 3 (Expected state action frequency vector). Let σ
be a policy on S , k ∈ N and T ≥ 0. x̂Tk is the random vari-
able on the set of histories Ω, which associates to all r ∈ Ω
the k-gram of its prefix of length T . That is, x̂Tk = ustatk(r|T ).
Given an initial distribution α , the Expected state action
frequency vector xTσ ,α ,k is Eσ ,α [x̂Tk ], i.e. the expectation of

x̂Tk .

We may forget the k in the notations when k = 1. xTσ ,α ,1

is a vector in [0;1]S×Σ whose components are non-negative

and sum to one, and xTσ ,α ,1[(s,a)] is the expected frequency,
up to time T , of taking state-action (s,a), given the initial
distribution α and the non determinism resolved by σ . If
σ is a policy on S , then x∞σ ,α ,k is the empty set if x

T
σ ,α ,k

does not converge as T → +∞, and the limit point if xTσ ,α ,k
converges. If K is a class of policies (K = SD,HR...), we
define:

HKk (α) =
⋃

σ∈K x
∞
σ ,α ,k

2) The polytopeH for communicating MDPs: For k= 1,
let H (S ) be the set of vectors x ∈ ∆(S×Σ) which satisfy
for all s′ ∈ S the linear equations:

∑
s∈S

∑
a∈Σ

P(s′|s,a) · x(s,a) = ∑
a′∈Σ

x(s′,a′) (1)

If H ⊆ ∆(S× Σ), let H be the convex closure of H. The
following proposition is an improvement by [17], [20], [13]

of a first result of [8].

Proposition 2. Let S be a weakly communicating MDP.

Then for all distribution α on S ,

H (S ) = HHR(α) = (HSD(α)),

Example 1 (A lossy communication channel).

0 I 1

ε ,snd(0)

rec(0)

1− ε ,snd(0) rec(1)

ε ,snd(1) 1− ε ,snd(1)

This lossy communication channel is communicating. We
will be interested in the actions appearing in the runs, in
Σ = {snd(1),snd(0),rec(1),rec(0)}. In order to get vectors
of reasonable size, we take the statistics of the traces. Non
determinism is only present on state I, from which the system
chooses betwen snd(0) and snd(1). It induces two possible
stationary and deterministic policies. One chooses snd(0)
and leads to the limit statistic vector of order one on Σ:
y1 = (snd(0) : 1

2−ε ,rec(0) : 1−ε
2−ε ,snd(1) : 0,rec(1) : 0). The

other chooses snd(1) in I, and gives the symmetric point
y2 = (snd(0) : 0,rec(0) : 0,snd(1) : 1

2−ε ,rec(1) : 1−ε
2−ε ). As the

system is weakly communicating, the projection of H (S ) in

R
Σk is the segment between y1 and y2.

III. STATE-ACTION FREQUENCIES AND MDPS OF

HIGHER ORDER.

A. Higher order statistics

We first generalize the results of [17], [8], [20] to higher

order statistics. In this section k is a natural number greater

than 0. We fix an MDP S and α an initial distribution on
S . The analogous of Derman’s theorem ([8], chapter 7),

is not true any more when we consider statistics of higher

orders: if k ≥ 2, in general HHRk (α) is not the convex hull
of HSRk (α). Still, we will see that in that case we have

HHRk (α) = (H
MR(k)
k (α)).



Example 2. Consider the following MDP:

S : s1

a,1
)) s2

c,1
ll

b,1
xx

s1 is the initial state. On S , consider the policy σ ∈ HR such
that the choice on state s2 depends on the history: if the system
was in s2, then σ chooses action c with probability one. If the
system was in s1 and just arrives in s2, σ chooses action b with
probability one. Then, xTσ ,α ,2 converges to a point x ∈ ∆((S×Σ)2),
such that x[s1as2b] = x[s2bs2c] = x[s2cs1a] = 1/3, and all the other
coordinates are zero. If x∈HSR2 (α), x[s1as2b] > 0 and x[s2cs1a] > 0
implies x[s1as2c] > 0. This proves that x 6∈ HSR2 (α), and in fact
we have dL1 (x,H

SR
2 (α)) ≥ 1/6, which proves that we do not have

HHR2 (α) =HSR2 (α). We will prove that HHR2 (α) = H
MR(2)
2 (α).

We describe now the construction of the k-th self product

of an MDP. Our goal is the following: the state-action

frequency vectors on the k-th self product S k of S should

correspond to the order k state-action frequency vectors on

S .

Definition 4. The k self product of an MDP S = (S,Σ,P)
is the MDP S k = (S′,Σ,P′) where:
S′ = (∏k−1i=1 S×Σ)×S,
If t ′ = (t1,b1...,bk−1,tk) and s

′ = (s1,a1...,ak−1,sk) are in S
′

and a ∈ Σ,

P′(t ′|s′,a) =







P(tk|sk,a) if (t1,b1...,bk−2,tk−1) =
(s2,a2...,ak−1,sk) and a= bk−1

0 otherwise

If S is a communicating MDP, then S k is communi-

cating as well. A run on S k is a sequence of couples in

S′ and Σ, which can be seen as a sequence of couples
in S and Σ, i.e. a run on S . Also, given a policy σ on
S , there is a naturally associated policy σ ′ on S k, which

takes the same actions given the same histories. However,

several policies on S may be associated to the same policy

σ ′ on S k. Indeed when we choose a policy on S k we

lose the first k steps of σ . We can use the notion of state-
action statistic vector for the MDP S k. If σ ′ is a policy

on S k, T ≥ 1, and α ′ is an initial distribution on S k, then

xTσ ′,α ′,1(S
k) ∈ R

(S′×Σ) = R
(S×Σ)k .

An initial distribution α and a policy σ on S induce a

unique initial distribution α ′(σ ,α) on S k, such that for all

state (s1,a1...,sk) in S k,

α ′(σ ,α)((s1,a1...,sk)) = P
σ ,α(Cs1,a1...,sk ).

Lemma 1. Let S be an MDP, α an initial distribution,
k ≥ 1, and σ a policy on S . We write σ ′ for the policy

on S k associated to σ , and α ′ = α ′(σ ,α) for the initial
distribution on S k associated to σ and α . Then for all
T ≥ 1, we have:

xT+k−1
σ ,α ,k (S ) = xTσ ′,α ′,1(S

k),

Both are vectors in R
(S×Σ)k . The following theorem and

corollary generalize proposition 2 to the context of higher

order statistics.

Theorem 1. Let S be a weakly communicating MDP

and k ≥ 1. Then HHR1 (S k) = HHRk (S ), and for all initial
distribution α on S ,

⋃

σ∈MR(k)(S )H
SR(S k)(α ′(σ ,α)) = H

MR(k)
k (S )(α)

Corollary 1. If S is weakly communicating,

H (S k) = HHR1 (S k) = HHRk (S ) = [HSR1 (S k)] =

[H
MR(k)
k (S )].

So far the polytope that we have associated to an MDP

lies in a vector space whose dimension depends on the

state space of the considered system. We eliminate this

dependence, in order to be able to compare systems with

very different state spaces. For this we introduce the linear

projection π : R(S×Σ)k → R
Σk such that if x ∈ R

(S×Σ)k , on a

component v ∈ Σk we have

π(x)[v] = ∑
u∈(S×Σ)k s.t. Tr(u)=v

x[u] (2)

In the future, if i,k ∈ N, we write H ik(S ) for H
MR(i)
k (S ),

and Πik(S ) for π(H ik(S )).

B. Distances

In this paragraph we compute the distance between a

statistic vector and a polytope Πkk(S ), and define a distance
between MDPs.

Definition 5 (The distance dk(x,S )). If S is a weakly

communicating MDP, k ∈ N, and x ∈ R
Σk , let

dk(x,S ) = In f
y∈Πk

k
(S )||x− y||1

The distance dk(x,S ) can be computed in time polyno-
mial in (|S| · |Σ|)k. We get non exponential bounds because
the polytope Hkk (S ) is characterized by a number of linear
equations polynomial in |S | (see equation 1). Thus, since
we are considering the L1 norm, we can use a linear

program of size polynomial in the size of S to compute

dk(x,S ). Notice that the polytope Hkk (S ) may have an
exponential number of extremal points (which correspond to

the exponential number of possible stationary deterministic

policies).

Definition 6 (dk between weakly-communicating MDPs).

If S1 and S2 are two weakly communicating MDPs let

dk(S1,S2) be the Hausdorff distance (with respect to the
norm L1) between their polytopes for k statistics:

dk(S1,S2) =
Sup
x∈Πk
k
(S1)
In f
y∈Πk
k
(S2)

||x−y||1

2
+
Sup
x∈Πk
k
(S2)
In f
y∈Πk
k
(S1)

||x−y||1

2
.



For instance, with two lossy channels S1,S2 with re-
spective parameters ε1 and ε2, it is not difficult to see that
the distance between the order one polytopes is |ε1− ε2|/2.
It is |ε1 − ε2| for the DGJP-metric of [9], for instance,
and we will see that in general our distance is far from

the DGJP-metric. Unfortunately, this distance is difficult to

compute, and hard to approximate to any ratio smaller than

the dimension |Σ|k. In fact, [14] proves that even the L1-
diameter of a polytope is not computable in PTIME, and

that it is not well approximable. We use the fact that the

Hausdorff distance with the norm L∞ is computable using

a linear program of polynomial size, to approximate the L1
Hausdorff distance within a factor |Σ|k.

Proposition 3. SupposeS1 and S2 weakly communicating.

Then we can compute the distance dk(S1,S2) within a
factor |Σ|k in PTIME(((|S1|+ |S2|) · |Σ|)

k).

In general, for a non weakly communicating MDP, the

set of the limit statistics is a union of polytopes. Given two

general MDPs S1,α1 and S2,α2, we partition their state

spaces into MECs, as in [6]. Write S j = S
0
j ∪ S

1
j ∪ ...∪ S

l j
j ,

for j ∈ {1,2}. For all j ∈ {1,2} and i ∈ [1; l j], we write S i
j

for the MDP associated to the MEC. If x ∈ R
Σk , δ ≥ 0 and

j ∈ {1,2}, we write V j(x,δ ) for the union of the state spaces
of the MECs whose associated polytope is δ -close to x. That
is:

V j(x,δ ) =
⋃

i

{S ji |dk(x,S
i
j ) ≤ δ}

Now, the distance between the two systems may have
two parameters: one for the distance of the respective points
on the polytopes associated to the MECs, the other for the
maximal probability to reach these MECs. If ε,δ ∈ [0;1],
S1,α1 will be said to be (ε,δ )-simulated byS2,α2 for order

k statistics, written S1,α1 ≺
k
(ε,δ ) S2,α2, if for all x ∈ R

Σk ,

MaxReach1(α1,V1(x,0)) ≤MaxReach2(α2,V2(x,ε))+δ

That is, given a statistic vector x, the maximal probability

to reach on S2 a MEC whose polytope is ε-close to x is
at least equal to the maximal probability to reach on S1 a

MEC whose polytope contains x, minus δ .
Taking δ = ε , this notion induces a quasi metric d≺k , and
a pseudo metric dk, which extend dk on the set of general

MDPs.

Definition 7 (Pseudometrics dk and d
≺
k ). Given S1,α1 and

S2,α2 two MDPs, let

d≺k (S1,S2) = Inf{ε > 0|S1,α1 ≺(ε,ε) S2,α2}

dk(S1,S2) =Min(d≺k (S1,S2),d
≺
k (S2,S1))

Notice that dk is symmetric, whereas d
≺
k is not in gen-

eral. In the case of weakly communicating MDPs, the two

definitions for dk(S1,S2) coincide. Both d
≺
k (S1,S2) and

dk(S1,S2) can be approximated in time polynomial in
((|S1| · |Σ|

k+ |S2| · |Σ|)
k), within a factor |Σ|k.

Our distances between MDPs cannot be compared to

the metrics defined in [27], [9]. These metrics are in fact

metrics between states of a given system, which may induce

metrics between systems, by taking their initial states. In our

approach, we do not rely on states, and the distance between

systems does not depend on the initial distributions if the

systems are weakly communicating.

IV. PROBLEMS ON MDPS

We consider two classes of problems on MDPs. First

”membership” type problems, where an MDP is fixed and

the input consists in a word or a statistic vector, and second

“comparison” type problems, where the input consists in two

MDPs that we want to compare. For the following, if ε > 0,

n ∈ N, k ∈ N and x ∈ R
Σk , let

Bn(x,ε) = {r ∈ Ω|‖ustatk(r|n)− x‖ ≤ ε}

As well, if w ∈ Σn, let Bn(w,ε) = {r ∈ Ω|‖(ustatk(r|n)−
ustatk(w)‖ ≤ ε}.

A. Membership problems

Most of the standard problems in the context of MDPs

optimization, (see [4], [19]), can be presented as follows.

We are given an MDP S , a length n ∈ N, a probability

threshold λ ∈ [0;1], and an objective x. The question is to
find a policy σ on S such that the probability of the set

of runs of length n which satisfy the objective is greater

than λ . In our context, a natural objective is, given a word
w ∈ Σ∗, to decide if there exists a policy such that with high

probability the traces are close to w. Since by proposition

1 two words are close iff their k-grams are close, we can

formulate our problem as follows.

For this subsection, we fix an MDP S with initial

distribution α , a threshold λ ∈ [0;1], and a radius parameter
δ ∈ [0;1].

Problem 1 (Statistical (λ ,δ )-membership).
Input: w ∈ Σn.
Question: ∃σ ∈ HR(S ) such that Pσ (Bn(w,δ )) ≥ λ?

Consider the associated language:

L
λ
δ = {w ∈ Σ∗|∃σ ∈ HR(S ) s.t. P

σ (Bn(w,δ )) ≥ λ}

Proposition 4. Given an MDP S of size n and a word w of

length not greater than n, it is PSPACE-hard to decide if w

satisfies the requirements of the (λ ,δ )-membership problem
on S .

If ε ∈ [0;1], we say that a word w ∈ Σn is ε-close to
L λ

δ if there exists w
′ ∈ Σn such that d(w,w′) ≤ ε , and w′ ∈

L
λ ·(1−ε)
δ ·(1+ε)

. We prove that L λ
δ is constant time testable: For

all ε ∈]0;1], there exists a tester Tε such that for long enough

input w ∈ Σ∗:



• If w ∈ L λ
δ , then Tε answers YES with probability at

least 2/3.
• If w is ε-far fromL λ

δ , Tε answers NO with probability

at least 2/3.

Fix ε > 0 and k = p1/εq. The construction of Tε is as

follows: Let S= S0∪S1∪ ...∪Sl be the decomposition of S
into MECs. Let Si, i ∈ [1; l], be the communicating MDPs
associated to the MECs Si, i∈ [1; l]. For all i∈ [1; l], compute
the set of linear equations which give Πkk(Si). As before, if

x ∈ R
Σk , V (x,δ ) =

⋃

{Si|dk(x,Si) ≤ δ}.

Algorithm 1 (The tester Tε (w)). Input: w ∈ Σ∗.

• Sample w to obtain x̂, an approximation of ustatk(w),
in constant time.

• Compute p =MaxReach(α,V(x̂,δ · (1+ ε))).
• If p ≥ λ · (1− ε/2), then Tε answers YES, if not, Tε

answers NO.

The following lemma, proved in [11], and based on a

Chernoff bound, proves that we can sample x̂ efficiently.

Lemma 2. There exists a probabilistic algorithm which

works in constant time on inputs w∈ Σ∗ and which produces

a vector x̂ ∈ R
Σk such that P(‖ustatk(w)− x̂‖ < δ · ε/14) ≥

2/3.

To prove the correctness of the tester, we present a

generalization of the results in [25] and [17] to the context

of general MDPs. By theorem 2 of [25], and theorem 5.1. of

[17], we know that for all i∈ [1; l], we can find two constants

Ci1,C
i
2, such that for all x∈R

Σk , n∈ N,αi ∈ ∆(Si), and ε > 0
we have:

• If dk(x,Si) ≤ δ · (1+ ε/2), then ∃σi ∈ HR(Si) s.t.

P
σi,αi(Bn(x,δ · (1+ ε))) ≥ 1−Ci1 · e

−Ci2·n·ε
2

• If dk(x,Si) > δ · (1 + ε), then ∀σi ∈ HR(Si),

P
σi,αi(Bn(x,δ · (1+ ε/2)))≤Ci1 · e

−Ci2·n·ε
2

Moreover, we can find two constants C01 ,C
0
2 , such that for

any policy σ on S , all α ∈ ∆(S) and all n ∈ N, Pσ ,α(Xn ∈

S0) ≤C
0
1 · e

−C01 ·n.

In the following, q,N ∈ N are such that

C01 · e
−C01 ·q <

λ · ε

4
;
l

∑
i=1

Ci1 · e
−Ci2·(N−q)ε

21 <
λ · ε

4

Lemma 3. Let x ∈ R
Σk ,n≥ N.

1) If MaxReach(α,V(x,δ · (1+ ε)))≤ λ · (1− ε/2), then
∀σ ∈HR(S ), P

σ ,α(Bn(x,δ · (1+ ε/2))≤ λ .
2) If MaxReach(α,V(x,δ · (1+ ε)))≥ λ · (1− ε/2), then

∃σ ∈HR(S ) s.t. P
σ ,α(Bn(x,δ · (1+ ε))≥ λ · (1− ε).

Theorem 2 (Correctness of Tε ). For all ε ∈]0;1[, Tε is an

ε-tester for L λ
δ .

Proof:

• Suppose w ∈ L λ
δ , |w| = n. Let x = ustatk(w). Then,

∃σ ∈HR(S ) such that Pσ ,α(Bn(w,δ )) ≥ λ . By lemma

2, with probability at least 2/3, ‖x− x̂‖ ≤ δ · ε/2, so
with probability at least 2/3, ∃σ ∈ HR(S ) such that
P

σ ,α(Bn(x̂,δ · (1+ε/2))) > λ . Using point 1 of lemma
3, with probability at least 2/3,
MaxReach(α,V(x̂,δ · (1+ ε)))≥ λ · (1− ε/2).
I.e. Tε answers YES with probability at least 2/3

• Conversely, suppose d(w,L
λ ·(1−ε)

δ ·(1+ε) ) > ε . Let w′ ∈

Σn, and y = ustatk(w
′). By contraposition, suppose

MaxReach(α,V (y,δ · (1 + ε))) ≥ λ · (1 − ε/2). Then, by

the point 2 of lemma 3, ∃σ ∈ HR(S ) such that
P

σ ,α(Bn(y,δ · (1+ ε))) ≥ λ · (1− ε). This implies w′ ∈

L
λ ·(1−ε)
δ ·(1+ε)

, and by hypothesis, dist(w,w′) ≥ ε . Using

proposition 1, this implies ‖x− y‖ ≥ ε/7. Since with
probability at least 2/3, ‖x− x̂‖ ≤ ε/14, with proba-
bility at least 2/3 we have MaxReach(α,V (x̂,δ · (1+
ε))) < λ · (1 − ε/2). Hence, Tε answers NO with

probability at least 2/3.

Using proposition 3 and the results of [7], Tε works in

time polynomial in |S|2 · (|Σ| · |S|)k, which is independent of
|w|.

B. Comparison problems

Two MDPs should be close if they can generate close

words with close probabilities. An MDP S1 should be

approximately simulated by an MDP S2 if S2 can generate

words close to the words generated by S1, with higher

probability.

Problem 2 (MDP ε-simulation).
Input: S1,S2 with initial distributions α1 and α2.
For w ∈ Σn, let

λ1(w) = Supσ1∈HR(S1)P
σ1(Bn(w,ε)),

λ2(w) = Supσ2∈HR(S2)P
σ2(Bn(w,ε)).

Question: ∀w ∈ Σ∗ large enough, λ1(w) ≤ λ2(w)?

The distance d≺k can be seen as a distance of simula-

tion. Given two MDPs S1 and S2 with respective initial

distributions α1 and α2, let N1,N2 be as for lemma 3, for
S1 and S2 respectively. If i ∈ {1,2}, w ∈ Σn and ε > 0,
let λi(w,ε) = Supσi∈HR(Si)P

σi,αi
i (Bn(w,ε)). The following

proposition is the analogous of the tester 1 for comparing

MDPs. It gives an approximate solution for problem 2.

Proposition 5. Let n≥Max(N1,N2).

• If d≺k (S1,S2) ≤ ε/2, then for all w ∈ Σ∗, λ1(w,0) ≤
λ2(w,2 · ε)+2 · ε .

• Conversely, suppose d≺k (S1,S2) > 3 ·ε/2. Then we can
find w ∈ Σ∗ such that λ1(w,ε/2) > λ2(w,ε)+ ε/4

Using the approximation algorithms to compute

d≺k (S1,S2), we get a procedure to compute approximately
the simulation relation between MDPs. A bisimulation

relation can be defined in the same way by taking the



symmetrization of the simulation relation, and can be

computed approximately by using the approximation

algorithms for dk(S1,S2).

V. PROBLEMS RELATED TO PROBABILISTIC AUTOMATA

In this section we study some problems on Probabilistic

Automata, analogous to the problems studied in the previous

section concerning MDPs. We will see that these are much

more difficult to solve, even approximately. We will deal

with three problems concerning PAs: the language emptiness

problem, the membership problem of a given word to the

language of a PA, and the comparison problem between two

PAs.

If A is a probabilistic automaton and w ∈ Σ∗, PA (w) is
the probability to arrive in an accepting state when w is read

on A .

Recall first the undecidability of the emptiness problem

for a PA. Given a PA A for which one of the two cases

hold, it is undecidable to decide if there exists w ∈ Σ∗ such

that PA (w) > 1−ε , or for all w∈ Σ∗, PA (w) < ε (Corollary
3.4 of [16]). If the length of the word is fixed, the problem

is NP-complete:

Problem 3 (n-Emptyness).

Input: A , ε ∈ [0;1], n ∈ N.

Question: Decide if there is a word w ∈ Σn such that
PA (w) ≥ 1− ε , or if for all word w ∈ Σn, PA (w) ≤ ε .

Proposition 6. Problem 3 is NP-complete.

A. Membership problems

We consider now membership problems. An automaton

A , and a threshold λ ∈]0;1[, are fixed.

Problem 4 (Membership problem).

Input: w ∈ Σ∗.

Question: Do we have PA (w) ≥ λ?

The associated language is:

L
λ = {w ∈ Σ∗|PA (w) ≥ λ}

Problem 4 is clearly computable in time O(|A | · |w|). We
prove that the language L λ is not constant time testable,

which contrasts with the results of [11] and our results

in the context of MDPs. In [11], the authors consider the

membership problem for non-deterministic automata. Using

a geometric construction, they prove that this problem is

testable in time independent of w.

Lemma 4. Let T be a randomized O(1)-algorithm with
inputs in Σ∗ which works in time N ∈ N and samples

subwords of length at most k ∈ N. Let w,w′ ∈ Σ∗ be such

that ‖ustatk(w)−ustatk(w
′)‖ ≤ ε

2·N·|Σ|k·N
. Then

|PT (YES|w)−PT (YES|w′)|+
|PT (NO|w)−PT (NO|w′)| ≤ ε .

Thus, a constant time tester gives close results on inputs

with close statistics, independently of the size of the input.

It implies that if a property can be tested in constant time,

it should be testable by considering inputs of bounded size.

In order to test the language L λ , as we did in the context

of MDPs, we may allow a relaxation on the threshold: if

ε ≥ 0, a word w ∈ Σn is ε-close to L λ if there exists w′ ∈
Σn such that d(w,w′) ≤ ε , and w′ ∈ L λ ·(1−ε). We prove

that there exists some PAs for which we cannot construct a

constant time tester for the associated membership problem,

even with the relaxation on the threshold.

Reading a word on a PA is the same as following a purely

time dependent policy on the associated MDP. A general

policy is far more flexible, and this explains the differences

betweens the complexities of the problems considered on

PAs or on MDPs.

Theorem 3. The membership problem for PAs is not con-

stant time testable.

B. Comparison problems

In [26], the author proves that we can decide whether two

PAs accept the same words with the same probabilities in

PTIME. However, the following problem, which can be seen

as a relaxation of the equivalence problem, is undecidable.

Problem 5 (Approximate equivalence).

Input: Two PAs A1 and A2, ε ∈ [0;1].
Question: for all w ∈ Σ∗, |P1(w)−P2(w)| ≤ ε?

Even if we introduce a relaxation on the input, as in [11],

the problem is still undecidable.

Problem 6 (Approximate simulation on close inputs).

Input: Two PAs A1 and A2, ε ∈ [0;1].
Question: for all w ∈ Σ∗, there exists a word w′ ∈ Σ∗ such

that d(w,w′) ≤ ε and |P1(w)−P2(w
′)| ≤ ε?

We reduce the undecidable emptiness problem for a

PA to each of these problems. Let A /0 be a probabilistic

automaton with no accepting state, which accepts no word

with probability greater than zero. A given automaton A

will be ε-close to A /0 (for problems 5) iff A does not

accept any word with probability greater than ε . Considering
problem 6, A is ε-simulated by A /0 iff it does not accept any

word with probability greater to ε . Since it is undecidable
to decide if all the finite words are accepted by A with

probability at most ε , this proves that problem 5 and 6 are
undecidable.

VI. ULTIMATE PROPERTIES

In this section, we present a class of properties on infinite

words which satisfy two conditions:

• The properties are ultimate, that is if w is a trace and w′

is obtained by changing only a finite number of letters

in w, then w and w′ should satisfy the same properties.



• They are not sensitive to time translation. That is, if

w′ is a suffix of w, then w and w′ satisfy the same

properties.

Two purely probabilistic processes will be ultimately

equivalent if they satisfy the same ultimate properties with

same probabilities. Two MDPs will be ultimately equivalent

if for any policy on one of the MDPs there exists a policy on

the second MDP such that the induced purely probabilistic

processes are ultimately equivalent.

First we will prove that two probabilistic processes are

ultimately equivalent iff they are trace equivalent, iff they

have the same statistic (Theorem 5, 6). Second, we will

prove that two weakly communicating MDPs are ultimately

equivalent iff their statistic polytopes coincide, that is iff

their distance is 0 (Theorem 7).

In order to compare different MDPs, we only consider

the traces of their runs. We consider the probability space

(Σω ,F ,Pσ ,α) where F is now the σ -field generated on Σω

by the cones Ca1a2...al = {w = b1,b2... ∈ Σω | (b1, ...,bl) =
(a1, ...,al)}, a1...al ∈ Σl . We write P

σ ,α indifferently for the

probability distribution on Ω, as in the previous section, and
for the probability distribution induced by Tr on Σω : If Γ ∈
F , Pσ ,α(Γ) is P

σ ,α(Tr−1(Γ)). Recall that Xn is the random
variable on Ω which associates to a run its state at time n,
and Yn associates to a run or a trace its action label at time

n.

A property is a set Γ ∈ F . Let T : Σω −→ Σω be

defined as T (w0w1...) = (w1w2...). An ultimate property
is a property Γ such that T−1(Γ) = Γ. We write G for

the class of ultimate properties. G is a σ -field, sometimes
called the invariant σ -field ([1]). Clearly, G satisfies the two
requirements formulated above.

For n ≥ 0, let Fn = B(Yn,Yn+1...) be the smallest σ -
field on Σω with respect to which all the Yi, i ≥ n are
measurable. Let F∞ =

⋂

n∈N Fn, called the tail σ -field of
Yn,n ≥ 0. Intuitively, an event Γ is in F∞ iff changing a

finite number of letters of an outcome w∈Σω does not affect

the occurrence of the event r ∈ Γ. Notice that G and F∞,

as σ -fields, are closed under union and intersection. The
following result of [1] shows that ultimate properties form

a particular class of properties of the tail σ -field.

Proposition 7. T maps F∞ one-to-one onto itself, and

G = {Γ ∈ F∞|T ·Γ = Γ}

Let (Ω,F ,P) be a probability space, and let Γ ∈ F . We

say that Γ is a P-atomic set of F if P(Γ) > 0, and for all
Γ′ ∈F such that Γ′ ⊆ Γ we have P(Γ′) = 0 or P(Γ′) = P(Γ).
If F can be decomposed as a finite union of P-atomic sets

for F and a P-negligible set, we shall say that F is finite.

The following theorem is a generalization of the classical

Kolmogorov’s 0−1 law to the context of Markov chains.

Theorem 4. If σ has finite memory i ∈ N, then the tail σ -
field of Yn,n ≥ 0, is finite, and the number of P

σ ,α-atomic

sets of the invariant σ -field G does not exceed |S|i.

Theorem 4 is a generalization of results of [2]. Notice that

if σ has infinite memory, F∞ is not finite in general, and

may contain no atomic subsets.

A. Markov chains with labelled transitions

In this subsection we consider ultimate properties associ-

ated to homogeneous Markov chains. A memoryless policy

σ on an MDP S = (S,Σ,P) induces on the state space
S× Σ a Labelled Transition Markov Chain S σ (LTMC).

This chain (Xn,Yn)n∈N, with (Xn,Yn) ∈ S×Σ for all n ∈ N,

has transition probabilities:

P[(Xn+1,Yn+1) = (x′,y′)|(Xn,Yn) = (x,y)] =
P(x′|x,y) ·σ(x′)(y′).

Let S = (Xn,Yn)n∈N be an irreducible LTMC, with initial

distribution α . Let k∈N. Then, since the chain is irreducible,

by the law of large numbers, there exists a vector in R
(S×Σ)k ,

which we call ustatk(S ), such that with probability one
the k-gram of the trace of a run on S converges to

ustatk(S ). Moreover, ustatk(S ) is independent of the initial
distribution α ([24], chapter 1). In the following, S1,α1
and S2,α2 are two LTMCs. We write P

α1
1 and P

α2
2 for the

associated probability distributions on Σω .

Definition 8 (Ultimate equivalence). S1,α1 and S2,α2 are
said to be ultimately equivalent, written

S1,α1 ∼u S2,α2, if for all Γ ∈ G , P
α1
1 (Γ) = P

α2
2 (Γ)

Proposition 8. If S1,α1 ∼u S2,α2, then for any Γ ∈ G , Γ
is P1-atomic iff Γ is P2-atomic.

If S is an irreducible LTMC with initial distribution α ,
then for all Γ ∈ G , P

α(Γ) ∈ {0,1}, and P
α(Γ) ∈ {0,1} is

independent of α .

As a consequence of the previous proposition, we can use

the notation S1∼uS2 to say that the LTMCs are ultimately

equivalent.

Definition 9 (Trace equivalence for LTMCs). S1 and S2

are trace equivalent if there exists two initial distributions

α1 and α2, on S1 and S2 respectively, such that:

For all w ∈ Σ∗, P
α1
1 (Cw) = P

α2
2 (Cw).

The following theorem shows that it is enough to know

the k-grams of an irreducible chain for a bounded number

of k’s, to characterize completely the ultimate properties of

the chain.

Theorem 5. Let S1 and S2 be two irreducible LTMCs.

Then the following are equivalent:

1) ∀k ∈ [1;(|S1|+ |S2|)
2], ustatk(S1) = ustatk(S2)

2) For all k ∈ N, ustatk(S1) = ustatk(S2)
3) S1 ∼u S2

4) S1 and S2 are trace equivalent.



GivenS ,α a general LTMC on state space S, let S= S0∪
S1∪...∪Sl be its decomposition into irreducible components:
S0 is the set of transient states, and the Si, i ∈ [1; l] are
the irreducible components of the chain. Each Si gives an

irreducible LTMC Si. Given i ∈ [1; l], let Reach(Si) be the
set of infinite runs on S which enter Si eventually (and then

never leave it), and pi = P
α(Reach(Si)). Clearly, the pi sum

to one. Let λSi : G →{0,1} be such that for Γ ∈ G , λSi(Γ) is
the probability that a run executed on Si is in Γ. The λSi are
well defined and take values in {0,1}, by the irreducibility
of the Si.

Lemma 5. LetS ,α be an LTMC and Γ∈G . Then P
α(Γ) =

∑li=1P
α(Reach(Si)) ·λSi(Γ).

Let S1,α1 and S2,α2 be two LTMCs on state spaces S1
and S2. Write S1 = S10∪S

1
1∪ ...∪S1l1 and S2 = S20∪S

2
1∪ ...∪

S2l2
for the decompositions into irreducible components of

the chains, and Reach j(S
j
i ) for the set of infinite runs on

S j which enter S
j
i eventually (and then never leave it). Let

p
j
i = P j(Reach j(S

j
i )). The irreducible components S

j
i can be

seen as irreducible LTMC S
j
i , and ∼u is an equivalence

relation on {S
j
i , j ∈ {0,1}, i ∈ [1; l j]}. Write {T1, ...,Tl} for

the equivalence classes of ∼u. If i ∈ [1; l], Ti is a union of
S1j and S

2
j′
. The next theorem summarizes our results on

LTMCs.

Theorem 6. Let S1,α1 and S2,α2 be two LTMCs. Then
the following are equivalent:

1) S1,α1 ∼u S2,α2
2) ∀i ∈ [1; l] P

α1
1 (Reach1(Ti)) = P

α2
2 (Reach2(Ti))

B. Ultimate simulation and equivalence for MDPs

In this section we compare the long term behaviors of

MDPs, by comparing the Markovian processes induced on

their state spaces by policies. Given a memoryless policy σ
on an MDP S = (S,Σ,P), it induces an LTMC S σ on S. If

σ has memory i ∈ N, we can see σ as a memoryless policy
on S i, and we write also S σ for the LTMC it induces on

S i.

The class of weakly communicating MDPs will play the

role of the irreducible Markov chains of the last subsection.

If we consider only i-memory policies, the ultimate simu-

lation relation between two weakly communicating MDPs

would depend on the initial distributions of the MDPs. To

tackle this problem, if i ∈ N we define the class UR(i)(S )
of the ultimately memory i policies onS , introduced in [15]

in the case i= 0.

Definition 10 (Policies with ultimate finite memory). A

policy σ is in the class UR(i)(S ) of the ultimately memory
i policies on S if there exists a policy σ∞ ∈ MR(i)(S ),
called the tail of σ , and a random stopping time τ on Ω,
called the switching time of σ , such that:

• If r ∈ Ω, ∀n≥ τ(r) we have σ(r|n) = σ∞(r|n).

• P
σ ({r|τ(r) < ∞}) = 1.

In other words, σ is in UR(i)(S ) if with probability one,
after a finite number of steps, σ behaves as a policy of
memory at most i. We can prove a generalization of theorem

1 for policies in UR(i):

Proposition 9. If S is weakly communicating, then for all

k, i ∈ N and all initial distribution α on S ,

H
UR(i)
k (α)(S ) = H

MR(i)
k (S )

We writeS σ ,α for the probabilistic process with labelled
transitions (which is not any more a Markov chain), induced

by σ and the initial distribution α on S . Two processes

S
σ1
1 ,α1 and S

σ2
2 ,α2 are said to be ultimately equivalent,

written S
σ1
1 ,α1 ∼uS

σ2
2 ,α2, if they give the same probabil-

ities to the same ultimate properties. That is, if for all Γ ∈ G

we have P
σ1,α1(Γ) = P

σ2,α2(Γ).

The analogous of theorem 6 holds: S
σ1
1 ,α1 and

S
σ2
2 ,α2 are ultimately equivalent iff for all i ∈ [1; l],

P
σ1,α1
1 (Reach1(Ti)) = P

σ2,α2
2 (Reach2(Ti)). Here the Ti are

equivalence classes on the set of irreducible components of

S
σ ∞
1
1 and S

σ ∞
2
2

Definition 11 (Simulation between MDPs). S1,α1 is said
to be i-memory ultimately simulated by S2,α2, written
S1,α1 ≺

i
u S2,α2, if for all σ1 ∈ UR(i)(S1), there exists

σ2 ∈UR(i)(S2) s.t. S
σ1
1 ,α1 ∼u S

σ2
2 ,α2.

We say that S1,α1 and S2,α2 are i-memory ultimately
equivalent, written S1,α1 ∼

i
u S2,α2, if S1,α1 ≺

i
u S2,α2

and S2,α2 ≺
i
u S1,α1. As for irreducible LTMC, the simu-

lation relation between weakly communicating MDPs does

not depend on the initial distributions of the systems. This

allows the notationS1≺
i
uS2 ifS1 andS2 are weakly com-

municating. The following theorem resumes the different

notions presented in this paper: polytopes, distance, ultimate

properties.

Theorem 7. Let S1 and S2 be two weakly communicating

MDPs. Then the following are equivalent:

• S1 ≺
i
u S2

• For all k ∈ N, Πik(S1) ⊆ Πik(S2).
• For all k ∈ [1;(|S1|+ |S2|)

i], Πik(S1) ⊆ Πik(S2).
• d≺

(|S1|+|S2|)i
(S1,S2) = 0.

Two weakly communicating MDPs are equivalent accord-

ing to the relation ∼iu induced by ≺iu iff their polytopes
coincide. The study of the ultimate properties of a general

MDP can be done by studying the ultimate properties of

its maximal end components, and the probabilities to reach

these end components. The maximal end components play

the role for MDPs that the irreducible components play for

LTMCs.



VII. CONCLUSION

We introduced Property and Equivalence Testing as a

method to approximate classical hard problems on the long

term behavior of MDPs, and characterized Equivalent sys-

tems with the class of ultimate properties. These methods

do not generalize to Probabilistic Automata. Potential ap-

plications are the approximate verification of quantitative

properties of large probabilistic systems and future work

will study how these methods may work with compact

representations and with partially observed MDPs.
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