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Abstract Descriptive Complexity and Algorithmic Complexity theory both use an
analysis in the worst-case. However, hard problems such as SAT becomemuch easier
whenwe relax the worst-case condition.We introduce the notion of statistical queries
which take finite structures as inputs and return distributions on finite domains. A
statistical constraint is a relation between statistical queries. We use the notion of
a stochastic approximation [15] for structures which satisfy a statistical constraint
and can be generated with a distribution µ. A hard problem is approximable with
an algorithm A if A is correct on YES instances with high probability, and on NO
instances generated by µ with high probability. We explain how a generalization of
Maxclique is easy on graphs which follow a power law degree distribution, even if
the graph is given as a stream of edges.

1 Introduction

Logical constraints are sentences in some logic L, mostly First and Second-order
Logic. The Consistency problem decides if there is a model which satisfies these
constraints. The Entailment problem decides if a constraint is a logical consequence
of a set φ1, ...φk of constraints. These problems are central both for Logic and
Computer Science, more specifically for Finite Model theory and Data Base theory
which share many central concepts. Janos Makowsky made central contributions at
the intersection of these areas, which have led to new fundamental notions, published
for example in [6, 7, 13].

The importance of finite structures and the link to Complexity theory are central
for the understanding of what efficiently computable is. In the classical Complexity
theory, the SAT problem has been a fundamentalNP-complete problem with natural
extensions to optimization problems such asMaxsat, extended versions such asQBF
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(Quantified Boolean Formula) and counting version such as#SAT. The Descriptive
Complexity characterizes all these problems with Logic-based languages. They are
considered hard because we do not know polynomial time algorithms for their exact
solutions. Logic-based approaches such as [7] identified subclasses for which there
exist solutions in polynomial time.

The SAT competition gives a different point of view however. Very efficient
heuristics have solved these problems for larger and larger instances over the years.
In [3], a recent history of these heuristics is presented. In general, a SAT instance
is first analyzed with statistical methods and the space of inputs is then partitioned
into several areas. Different heuristics are used for each area and provide efficient
solutions in practice.

The notion of effective computability therefore needs to be better understood. An
O(n)-time algorithm must be linear for all inputs of size n, for both Computational
and Descriptive Complexity which both use the worst-case complexity. It is however
possible that an algorithm A would require O(2n) time on a few inputs, while all
other inputs require onlyO(n)-time. How easy are these inputs to generate? For SAT,
there are hard instances, but they are either randomly generated or hard to generate
with a deterministic algorithm. There have been at least three possible approaches
for a better understanding of efficient algorithms when problems are hard in the
worst-case:

• Find classes of inputs for which hard problems become easy. Bounded Clique-
width for graphs is an example which introduces a new parameter k, as shown by
Janos Makowsky and his co-authors in [7],

• Use Approximations, on inputs and outputs,
• Relax the Worst-case Complexity.

This paper presents an approach based on a statistical property which relaxes the
Worst-case Complexity. We show how some NP-hard problems can become easy on
finite structures which satisfy such a property, using the notion of a 1-sided stochastic
randomized approximation algorithm A of a decision problem, defined in [15]. We
consider random inputs of size n which follow some statistical property, generated
by a distribution µ. On Yes instances, the algorithm accepts with high probability,
and on NO instances generated by µ, the algorithm rejects with high probability
(typically 2/3 or 1− δ). We only guarantee a correct answer on NO instances when
the input follows the statistics and the probabilistic space is the product of µ × Ω
where Ω is the probabilistic space of the algorithm.

As an example, we take graphs whose degree distribution follows a power law (a
specific statistical constraint) and we explain how a generalization ofMaxclique can
become easy when the graph is given as a stream of edges. We survey this approach,
based on statistical constraints, which restricts the class of inputs and take Words,
Graphs and relational databases as a source of structures for which there are natural
statistical constraints.

In the second section, we review some classical results concerning logical con-
straints, classical approximations for search and decision problems and average
complexity. In the third section, we present the statistical queries and constraints,



Data with Logical and Statistical constraints 3

for classes of Words, Graphs and Datawarehouses, i.e. relational structures used
for data analysis. In the fourth section, the notion of a stochastic approximation for
structures which satisfy some statistical constraint is presented and we discuss the
case of graphs which follow a power law degree distribution.

2 Classical approaches

We review three different approaches to understand the complexity of search and
decision problems and the existence of efficient algorithms.

2.1 Logical constraints

The importance of finite structures for the Entailment problem was stressed in [6].
It was shown that for some class of constraints called Embedded Implicational
Depencies, the Entailment problem on finite structures is co-recursively enumerable
complete. It is one of first results on Finite Model theory, which has become a
mainstream subject.

The study of density functions of graph properties definable in Monadic Second
Order Logic started with the work of Blatter and Specker [4]. This rich subject on
MSO definable graph properties was extended in [13]. The case of relations of arity
4, studied in[8], shows a very different situation, relevant for database theory where
relations may have a large arity.

If MSO-definable properties on graphs can be NP-complete, hence hard, which
additional constraint implies a feasible solution? In [7], Bruno Courcelle, Janos
Makowsky and Udi Rotics propose the bounded Clique-width property and proved
that MSO properties on graphs with bounded Clique-width have a linear time solu-
tion. This influential result has started an entire new research area.

Other graph properties such as bounded treewidth have similar properties and
lead to study the time complexity of an algorithm as a function of n and other graph
parameters, hence parametrized complexity. In particular, when the time complexity
is polynomial in n and exponential in the graph parameters [17].

2.2 Approximation

A search problem returns a numerical value and defines a function f such that on
input x, we have f(x) = y. A randomized algorithm A (ε, δ)-approximates the
search problem if IProb[| A(x) − f(x) |< ε] > 1 − δ for an additive error and
IProb[| A(x)− f(x) |< ε.f(x)] > 1− δ for a multiplicative error.
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For a decision problem Q, this definition is inadequate and we need to shift the
approximation on the input. Assume a distance dist on the inputs x, such as the Edit
distance on Words, Trees and Graphs, and a model where we query the input: given
a predicate P of arity k and arguments a1, ...ak, we ask if P (a1, ...ak) is true or not.
We extend the distance to a propertyQ as dist(x,Q) =Minx′∈Qdist(x, x

′) and say
that x is ε-far from Q if dist(x,Q) ≥ ε. An (ε, δ)-Tester is a randomized algorithm
A such that:

• If x ∈ Q then A accepts with probability 1,
• If x is ε-far from Q then IProb[A(x)rejects] > 1− δ.
• The query complexity is independent of n, the size of x, and depends only on

ε and δ.
This definition is 1-sided, but can be generalized to a 2-sided version. The query

complexity can also be extended to some sublinear function of n. Both definitions
assume a worst-case situation.

2.3 Average-case Complexity

The natural approach, originated by Levin [14], considered a distribution D on
the inputs and required that the expected time complexity on D be bounded by a
function of n. Given a reduction between Distributional problems, problems with a
distribution D, [14] presented a complete problem for polynomial time computable
distributions. More advanced results are presented in [5].

On the algorithmic side, the non worst-case analysis [19] presents the analysis of
algorithms on specific distributions. In section 4, we consider inputs which satisfy
statistical constraints and a distribution µ on these inputs. We then consider a prob-
abilistic space which is a product of µ×Ω where Ω is the probabilistic space of the
algorithm. The algorithm is correct only on inputs generated by µ.

3 Statistical constraints

A statistical query generalizes the notion of a query on a class K of finite structures,
as a function which takes a finite structure Un ∈ K, whose domain is of size n,
as input and returns a relation on Un of arity r. A statistical query takes a finite
structure Un ∈ K as input and returns a multivariate distribution δ on Un of arity
r ≥ 1. A statistical constraint is a relation between distributions, for example the
equality or the proximity dist(δ, δ′) ≤ ε relation for some dist function between
distributions, and is similar to a boolean query. On relational structures, statistical
queries are often called OLAP (OnLine Analytical Processing) queries and defined
in SQL with the GROUP BY expression.
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In general, we take a class K of finite structures of size n augmented with the
setQ of rationals with the basic arithmetical operations as parameters. We construct
terms and formulas to define the statistical queries. The use of specific distances
between distributions is a central element of this approach. The difference with the
Average-case complexity is that the distribution of inputs concerns inputs of size
n, which satisfy some statistical constraints and not arbitrary distributions D on the
inputs. In section 4, we introduce the 1-sided-stochastic approximation, similar to
the approximation in Property Testing.

Let L be a logic on a class K of finite structures with several domains. Consider
a First-order Σ1 formula ψ(x1) with the free variable x1 ∈ D and some existential
quantifier. We may have several domains, we write:

ψ(x1 ∈ D) : ∃y1 ∈ D′ ϕ(x1, y1)

to specify that x1 ranges over D and y1 ranges over D′ = {1, 2...n}. We say that
ψ(x1) is separating on a relational structure U = (D,D′, R1, ...Rk) if the sets
Wa = {b : ϕ(a, b)} are disjoint for each a ∈ D. Observe that if there is a functional
dependency y1 → x1, then ψ(x1) is always separating.

The counting formulaψc(x1) defines the function which associates to each a ∈ D
the number of distinct values of y1, i.e. |Wa| and we write:

ψc(x1) : #y1 ϕ(x1, y1)

We can also write ψc(a) =| {b : ϕ(a, b)} |.
When the formula ψ(x1) is separating for the domainD of cardinalitym, we can

introduce the distribution formula ψd(x1) which defines the distribution of values
for x1 = a1, .., am:

ψd(x1) : %y1 ϕ(x1, y1)

We defineψd(a) = ψc(a)∑
a ψc(a)

= ψc(a)
n where n is the size ofD′, the domain of y1,

assuming the dependency y1 → x1. In this case,
∑
a ψd(a) = 1 and ψd(x1) is a 1-

dimension distribution. In general we may haveψd(x1, x2, ...xd) for a distribution of
dimension d. OnWords, Graphs and Datawarehouses (specific relational structures),
there are functional dependencies which guarantee that the formulas are separating
and therefore define statistical queries. On Datawarehouses (see section 3.3), if the
free variables x1, x2, ...xd of the query are analysis variables, then the distributions
are well defined because

y1 → x1, x2, ...xd

Given a distance dist between 2 distributions, a Statistical constraint is a relation
between two distributions δ1, δ2, either equality δ1 = δ2 or dist(δ1, δ2) < ε for a
specific distance dist between distributions.
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3.1 Words

A binary word wn ∈ {0, 1}n is classically represented by the finite structure:

Wn = ({1, 2...n}, P0, P1, <)

where the domain is the set {1, 2...n} ordered with the binary predicate<, and unary
predicates Pi for i = 0, 1 such that Pi(j) is true if wn[j] = i. On a large alphabet
Σm = {a1, a2...am} where each ai is a symbol, it is more convenient to consider a
word wn of length n as a finite structure with two domains such as:

Un = ({1, 2...n}, Σm, P,<)

where the binary relation P ⊆ Σm × {1, 2...n} is defined by P (i, j) is true if
wn[j] = ai, i.e. the letter ai appears in position j.

A statistical query gives, for example, the distribution of the occurrences of each
letter, where the occurrence function occ : Σm → {1, 2...n} is such that for each
letter ai ∈ Σm, occ(ai) = #ai where #ai is the number of occurrences of the
letter ai. The frequency function f : {1, 2...n} → {0, 1, 2...n} gives the ordered
occurrences, i.e. f(i + 1) ≤ f(i) holds for i = 1, ..n − 1. So f(1) = #ai is the
number of occurrences of the most frequent letter ai and f(n) = #aj is the number
of occurrences of the least frequent letter. The relative occurrence occ′ is defined as
occ′(ai) = occ(ai)/n and the relative frequency f ′ is defined as f ′(i) = f(i)/n.
Both functions take values on the rationals Q. Consider the two words aaabb and
bbbaa: they have the same frequencies f but different occurrence functions occ.

Both occ′ and f ′ are distributions as
∑
i occ

′(i) =
∑
i f
′(i) = 1. The typical

application is when the sizem of the alphabet is large and n is very large. Typically,
Large language Models read the whole internet,m ' 3.104 is the number of tokens,
the basic elements defined by the Byte-Pair Encoding algorithm [9], and n ' 1012.
A strict statistical constraint states that occ′ is for example the uniform distribution,
i.e.

∀i occ(ai) = n/m

whenm divides n. In general, we accept rounding errors and a statistical constraint
is the property:

∀i occ′(i) ' 1/m

where ' is the classical approximation on Q. Hence the class of structures is:

Vn = ({1, 2...n}, Σm, P,<;Q,+, ∗, /)

as the set of rational numbers Q and the arithmetical functions +, ∗, / can be used
to define basic terms. Another statistical constraint would apply on f ′, for example
f ′ is a Zipf distribution:

∀i f ′(i) ' c/i2
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where c is a constant which depends on n, the size of the structures. The term c/i2

takes values in Q.
A k-gram is the generalization of occ′ to factors of length k, i.e. consecutive

letters. We write ustatk(wn) as the function from (Σm)k into [0, 1]. It gives the
probability to observe a k-factor in a word of length n when sampling a uniform
position 1 ≤ i ≤ n− k + 1, hence the name uniform statistics.

ustatk(wn) =
1

n− k + 1
.


#w1

#w2

...
#wp


where wi is the i-th k-factor ordered lexicographically. As an example:

ustat2(aaabb) =
1

4
.


2
1
0
1

 =
1

4
.


#aa = 2
#ab = 1
#ba = 0
#bb = 1

 .

A k-gram defines the next distribution: given a (k − 1)-factor what is the distri-
bution of the next letter? For example, for w5 = aaabb, k = 2 and the factor a, the
distribution of the next letter is:

nexta(aaabb) =
1

3
.

(
2
1

)
.

There are 3 factors of length 2 which start with an a: two of them have an a as
the next letter letter and one of them has a b as the next letter. Similarly, if the factor
starts with a b, the distribution is:

nextb(aaabb) =

(
0
1

)
.

We can then consider ustat2(wn)[x1, x2] where x1, x2 ∈ Σ as the probability
that a uniform random factor u of size 2 is such that u1 = x1 ∧ u2 = x2. We write:

ustat2[x1, x2] = IProbu[u1 = x1 ∧ u2 = x2].

We then use the notation:

ustat2[x2 | x1 = a] = IProbu[u2 = x2 | u1 = x1 = a] = nexta.

We use conditional probabilities as projections. Similarly, for a distribution of arity
r with variables x1...xr. Consider the formula:

ψ2(x1, x2 ∈ Σm) : ∃y1, y2 ∈ {1, 2...n} P (x1, y1) ∧ y2 = y1 + 1 ∧ P (x2, y2)

The formula ψ(x1) is separating for the domain Σm, because of the functional
dependency y1, y2 → x1, x2: there is only one letter on each position.We can replace
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the existential quantifier ∃y1, y2 by the counting #y1 and the distribution %y1
quantifiers and obtain the formulas ψc(x1, x2) and ψd(x1, x2). It defines precisely
the distribution ustat2[x1, x2].

If the sizem of the alphabet is large, the number of potential k-factors ismk, i.e.
exponential in k. The distribution next is sparse in general but its space representation
is too large, although it can be compressed. A neural network or a transformer
constructs a compressed version [21] of a distribution next′, related to next, of size
(p ·k)2 ·dwhich approximates this distribution, where p is the size of the embedding
of the tokens and d the depth of the circuit. We have d layers where each layer is
a matrix of size p · k. A node at layer i applies a non linear function to a linear
combination of the values of the nodes at the previous layer i − 1, for i > 1. This
distribution is central for Large Language Models and generative A.I. in general.

3.2 Graphs

Afinite graph is a structureGn = ({1, 2...n}, E), whereE ⊆ {1, 2...n}×{1, 2...n}
is the Edge relation. As in the previous case, we extend the structure with the rationals
and obtain:

Gn = ({1, 2...n}, E, ;Q,+, ∗, /)

Let d(x, i) the relation expressing that a node x has i distinct neighbors. In this case,
we have the functional dependency x → i and we can define the natural degree
distributions. The degree function degree defines the number of nodes of a degree i,
i.e. for i, j ∈ {1, 2...n}, degree(i) = j if exactly j nodes have degree i. The degree
distribution is:

degreed(i) = degree(i)/n

which gives the probability that a random uniform node has degree i.
We can use the Logic FO+ C (Counting). We extend the first-order quantifiers

with new quantifiers ∃i,∃>i,∃<i, which quantify the existence of exactly i, more
than i, less than i witnesses. Define:

d(x, i) : ∃iy E(x, y)

degree(i) : #x d(x, i)

degreed(i) : %x d(x, i)

This last formula formula defines the degree distribution of the graph because
of the functional dependency x → i. One can show that we precisely need this
extension of First order Logic. An important statistical constraint is that the degree′
distribution follows a Zipf law of parameter α > 1:

degreed(i) ' c/iα
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The ' symbol refers to some distance, between two distributions, discussed in
Section 3.4.

This last formula formula gives the degree distribution of the graph because if the
functional dependency x → i. If we express that this degree distribution is ε-close
to a Zipf distribution for the Fréchet distance introduced in section 3.4, we write:

%x d(x, i) 'F,ε c/i2 for distF (%x d(x, i), c/i2) < ε

In Section 4, we consider the constraint %x d(x, i) = c/i2, i.e the graphs follow a
power law degree distribution of parameter α = 2.

3.3 Relational Databases and Datawarehouses

Consider the two tables of Figures 1, 2. The Product relation lists different products
with a key PID, and the Buy relation lists the Sales of the products with a date and a
price. TheBuy relation is often called aDatawarehouse, as it may grow to a very large
table and there are functional dependencies between the attributes of the Buy relation
and some attributes of other tables, called the analysis attributes. An OLAP schema
defines all the functional dependencies between the attributes of the Datawarehouse
relation and the analysis attributes. In this example: PID,DATE,PRICE →
TY PE,AGE and the two attributes TY PE,AGE are analysis variables.

Product

PID TYPE AGE
P1 A O
P2 A N
P3 B O
P4 C N

Fig. 1 Table Product

Buy

PID DATE PRICE
P1 Jan 1. 15
P2 Jan 2. 30
P1 Jan 2. 20
P3 Jan 3. 45
P4 Jan 5. 30
P1 Jan 6. 10

Fig. 2 Table Buy

It is natural to analyze the number of Sales by TYPE, as a unary distribution Qd1,
or the number of Sales by TYPE and AGE as a binary distributionQd2. In both cases,
we count the number of tuples of the relation Buy for different values of the analysis
variables, called dimensions in the OLAP terminology. It is also natural to analyze
the global Sales, i.e the Sum of the PRICE attribute with the same dimensions. They
correspond to the Count or Sum Aggregation operators in SQL, followed by the
GROUP BY construction. We can define these statistical queries with simple First
Order Formulas in the relational language Product(x, t, a), Buy(x, y, z).
• Qd1: number of sales per TYPE.

Qd1(t) : %(x, y, z)∃a Product(x, t, a) ∧Buy(x, y, z)
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• Qd2 number of sales per TYPE and AGE.

Qd1(t, a) : %(x, y, z) Product(x, t, a) ∧Buy(x, y, z)

Both distributions are well defined because x, y, z → t, a. For the sum of Sales,
we sum on the PRICE attribute and write for the first query:

Qd1(t) : %Sum(x, y, z).z ∃a Product(x, t, a) ∧Buy(x, y, z)

A possible Statistical constraint is to fix one of these distributions. For example,
the number of Sales by AGE is close to: δ0: (O: 2/3, N: 1/3). It is true for the
instance of Figures 1, 2. If the distributions are close for the L1 distance, we write:

%(x, y, z)∃t Products(x, t, a) ∧Buy(x, y, z) '1,ε (O : 2/3, N : 1/3)

Statistical constraints are similar to the distributions introduced in the Probablistic
Relational models of [12]. We now introduce in Section 3.4 a central notion: the
distance between distributions.

3.4 Distances between distributions

Given two distributions δ1, δ2 on the same domain, there aremany possible distances.
Classical distances include Lp distances, EMD (Earth-Moving Distance), Fréchet
and other pseudo distances such as KL (Kullback-Liebler).

The L1 distance, also called the variational distance between two distributions
δ1, δ2 on a domain with n elements is defined as:

dist1(δ1, δ2) =
1

2
·
∑
i

| δ1(i)− δ2(i) | .

If we relabel the domain with a permutation π we may have a smaller variation∑
i | δ1(i)− δ2(π(i)) | and [10] introduces the Variation distance up to relabeling

VDR(δ1, δ2)1 as the minimum over π of 1
2 ·
∑
i | δ1(i) − δ2(π(i)) |. It is also the

L1 distance between the frequencies of the distributions, i.e. ordered by decreasing
values. Notice, that the distribution of the frequencies is invariant by relabeling,
hence used for the definition of statistical constraints.

The Fréchet distance considers the distributions as points x, y in two dimensions
and defines the Fréchet distance as the minimum d such that for each point (x, y) of
δi there is a point of δj at an Euclidian distance less than d. For the relative Fréchet
distance, consider an extended Box (x · (1± ε1), y · (1± ε2)) associated with each
point x, y, as in the Figure 3. The relative Fréchet distance distance distF is the

1 For a distribution δ, let the histogram hδ of δ be the function [0, 1] → N such that
hδ(x) = |{i : δ(i) = x}|, the number ef elements with probability x. Then [10] shows the
connection betwenVDR and the Earth-Moving Distance EMD of the histograms:VDR(δ1, δ2) =
EMD(hδ1 , hδ2)/2.
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minimum ε1, ε2 such that for each point (x, y) of δi there is a point of δj in the
extended Box (x · (1± ε1), y · (1± ε2)).

We concentrate on two distances L1 and relative Fréchet. Consider a stream of
Graph edges and two inputs determined by the stream of edges up to times t1 forG1,
and between time t1 and t2 > t1 for G2 (assume t2 ' 2.t1) with approximately the
same number of nodes. The two degree distributions δ1 and δ2 represented in Figure
3 seem close to a power law.

Degree	distributions:					

x*(1+	ε1	)	

1	 2	 n	3	

y*(1+	ε2	)	

δ1 
δ2	

Fig. 3 Degree distributions of G1 and G2 on the same stream of Graph edges

TheL1 distance between the degree distributions δ1 and δ2 of Figure 3 is however
not small because for large degrees i, one of the two distributions has a value 0
depending on i. In this example, the two distributions are close for the relative
Fréchet distance because the points x, y of each distributions are relatively close for
both x and y, and are also close to a power law. In practice, a statistical law assumes
the data is only close to a predefined distribution, as in this example.

The L1 distance is useful for distributions with small supports and the relative
Fréchet distance is adapted for large supports of size O(n). These distances are
completely different from the Edit distance on the data. Indeed structures of very
different sizes are far for the Edit distance but could be close for L1 and relative
Fréchet.
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4 Stochastic Approximation

In the classical setting, discussed in section 2.2, we approximate an optimization
problem such as Maxclique with a possible (ε, δ) randomized algorithm A which
returns on an input x of size n an integer value in {1, 2...n} such that:

∀x | x |> c→ IProbΩ [ | A(x)−Maxclique(x) |≤ ε] ≥ 1− δ

In this definition, the randomized algorithm A has a probabilistic space Ω and
guarantees a good answer in the worst-case for large enough inputs x, i.e. | x |> c.
We want to relax this last condition and only consider random inputs which satisfy
some statistical property. Assume a distribution µ over structures which satisfy some
statistical property and a decision problem where the answer is Yes or No.

1-sided-stochastic approximation.ForYes instanceswe consider theworst-case,
but for No instances we only consider random inputs for µ. A δ-1-sided stochastic
randomized algorithm A for a language L satisfies the following two conditions:

• For all YES instances x, ProbΩ [A(x) accepts] ≥ 1− δ
• For NO instances x drawn from µ, Probµ×Ω [A(x) rejects] ≥ 1− δ

where Ω is the set of possible choices of the algorithm.

2-sided-stochastic approximation.A δ-2-sided stochastic randomized algorithm
A for a language L satisfies the following two conditions:

• For YES instances x drawn from µ, Probµ×Ω [A(x) accepts] ≥ 1− δ
• For NO instances x drawn from µ, Probµ×Ω [A(x) rejects] ≥ 1− δ

Both definitions depend on µ and we assume that µ is uniform unless it is
explicitely specified.

4.1 Large dense subgraphs of graphs which follow a power law degree
distribution

Consider a stream of Graph edges (vi, vj) and we want to decide if there is a large
dense subgraph in the underlying graphG. The approximation of dense subgraphs is
well studied in [2] and anΩ(n) space lower bound is known [1]. A classical density is
the ratio ρ = |E[S]|/|S| but we want a much higher density γ = 2.|E[S]|/|S|(|S|−
1), hence the expression very dense. If γ = 1, we have a clique, and in practice we
look for clusters where γ < 1.

Definition 1 The (γ, δ)-large very dense subgraph problem, where the parameters
γ, δ ≤ 1, takes as input a graph G = (V,E) and decides whether there exists an
induced subgraph S ⊆ V such that |S| > δ

√
n and |E[S]| > γ|S|(|S| − 1)/2.
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A very dense subgraph is also called a γ-clique, as the density is greater than γ.
The parameter δ concerns the size of the cluster. The (γ, δ)-large very dense subgraph
problem is NP-hard and hard to approximate [11], as it contains the maximum clique
problem as the special case when γ = 1. This leads us to use a new notion of
approximation, adapted to a specific distribution of inputs. Social graphs define a
specific regime where graphs approximately follow a power law degree distribution,
precisely the statistical constraint considered in section 3.2.

We proposed in [15] a streaming algorithmwhich usesO(
√
n. log n) space, reads

one edge each time and approximates this hard problem on graphs which follow a
power law degree distribution. The distribution µ is the uniform distribution on
graphs which satisfy this statistical constraint, for each size n.

Theorem 1 There is a δ-1-sided stochastic randomized streaming algorithm A
which usesO(

√
n. log n) space for the (γ, δ)-large very dense subgraph problem, on

inputs which follow a power law degree distribution where the parameters γ, δ ≤ 1,
takes as input a graph G = (Vn, E) and decides whether there exists an induced
subgraph S ⊆ V such that |S| > δ

√
n and |E[S]| > γ|S|(|S| − 1)/2.

The algorithm uses a Reservoir sampling [20] and the analysis relies on the
existence of giant components for random graphs generated in a 2-stage process: we
first take the configuration model of random graphs which follow a power law degree
distribution and then consider an Erdös-Renyi model where edges are uniformly
sampled. We then use the Molloy-Reed [18] analysis for the existence of giant
components in theReservoir. If there is a largeConnected component in theReservoir
of size O(

√
n. log n), the algorithm A accepts, else it rejects.

In this approach, it is important to efficiently decide if some data follows a statis-
tical property. In [16], we give sufficient conditions on the frequency distributions of
a streams of elements taken from a set {e1, ...en}, so that the frequency distributon
can be tested Online in spaceO(poly(log n)), in the sense of a property Tester, using
the relative Fréchet distance between distributions.

5 Conclusion

Data have a logical structure with many dependencies which are often expressed
in First and Second-order Logic. They also have statistical properties, as defined in
this paper by simple relations between statistical queries. Both Logical and Statis-
tical constraints are useful to analyze the data and predict their evolution, but the
techniques used are quite different.

We gave the example of graphs which follow a power law degree distribution,
as a statistical property. This statistical property is definable in FO+ Counting. On
these graphs, a generalization of Maxclique, definable in MSO, becomes easy with
a δ-1-sided stochastic approximation. In this framework, both logical and statistical
constraints can be combined to solve hard problems in the worst case.



14 Michel de Rougemont

Acknowledgment: I thank Richard Lassaigne for fruitful discussions on the
notions of statistical constraints.

References

1. Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. Proc. VLDB Endow., 5(5):454–465, January 2012.

2. Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E.
Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-
pass dynamic streams. CoRR, abs/1504.02268, 2015.

3. Armin Biere, Mathias Fleury, Nils Froleyks, and J.H. Marijn Heule. The sat museum. In
Proceedings of the 14th International Workshop on Pragmatics of SAT (SAT 2003), volume
3545 of CEUR Workshop Proceedings, pages 72–87, 2023.

4. C. Blatter and E. Specker. Modular periodicity of combinatorial sequences. Abstracts Am.
Math. Soc., 4, 1983.

5. Andrej Bogdanov and Luca Trevisan. Average-case complexity, 2021.
6. Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded implicational

dependencies and their inference problem. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, STOC, pages 342–354. Association for Computing
Machinery, 1981.

7. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems, 9(4):125–150, 2000.

8. E. Fischer. The specker–blatter theorem does not hold for quaternary relations. Journal of
Combinatorial Theory, Series A, 103(1):121–136, 2003.

9. Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, 1994.
10. Oded Goldreich and Dana Ron. On the Relation Between the Relative Earth Mover Distance

and the Variation Distance (an Exposition), pages 141–151. Springer International Publishing,
2020.

11. J. Hastad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, pages 627–. IEEE Computer
Society, 1996.

12. Daphne Koller. Probabilistic relational models. In Sašo Džeroski and Peter Flach, editors,
Inductive Logic Programming, pages 3–13. Springer Berlin Heidelberg, 1999.

13. Tomer Kotek and Johann A. Makowsky. Definability of Combinatorial Functions and Their
Linear Recurrence Relations, pages 444–462. Springer Berlin Heidelberg, 2010.

14. Leonid Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286,
1986.

15. Claire Mathieu and Michel de Rougemont. Large very dense subgraphs in a stream of edges.
Network Science, 9(4):403–424, 2021.

16. Claire Mathieu and Michel de Rougemont. Testing frequency distributions in a stream. arXiv,
2309.11175, 2023.

17. Kitty Meeks and Alexander Scott. The parameterised complexity of list problems on graphs
of bounded treewidth. Information and Computation, 251:91–103, 2016.

18. Michael Molloy and Bruce Reed. The size of the giant component of a random graph with a
given degree sequence. Comb. Probab. Comput., 7(3):295–305, September 1998.

19. Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University
Press, 2021.

20. Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
March 1985.

21. Yibo Yang, Stephan Mandt, and Lucas Theis. An introduction to neural data compression.
Foundations and Trends in Computer Graphics and Vision, 15(2):113–200, 2023.


