Large Very Dense Subgraphs in a Stream of Edges

Claire Mathieu IRIF-CNRS Michel de Rougemont University Paris II IRIF-CNRS

Plan

- 1. Stream of graph edges
 - Hard problems: Maxclique, (γ, δ) -cluster
 - special case: social graphs
- 2. Context: giant components of random graphs
 - Erdos-Renyi model
 - Power law degree distribution and configuration model: Molloy-Reed
 - Our algorithm: keep k uniform sampled edges, observe the giant components
- **3.** Main result: 1-way stochastic approximation: Detection of a (γ, δ) -cluster
 - If G has such a cluster and $k = \Theta(\sqrt{n} \log n)$, the algorithm accepts with h.p.
 - For a random input on μ , if G does not have such a cluster, the algorithm rejects with h.p.
- 4. Other results: Lower bound, Reconstruction, Extensions to dynamic graphs

Conclusion: Finding a (γ, δ) -cluster is not so hard on social graphs

1. Stream of graph edges e_1, e_2, \dots, e_m, \dots

S is a (γ, δ) – cluster if :

- $|E(S)| \ge \gamma . |S| . |S-1|/2$
- $|S| \ge \delta . \sqrt{n}$

MaxClique has value \sqrt{n} iff there is a (1,1)-cluster

Hard problem [Hastad 1999]:

No poly-time $n^{.99}$ approximation of MaxClique unless P=NP.

Goal of the paper: existence of a (γ, δ) -cluster

is not so hard on social graphs

A social graph: Twitter Graph

Twitter Graph G

@JoeBiden: With @KamalaHarris. Make sure to vote for #Election2020.

Nodes={@JoeBiden, @KamalaHarris, #Election2020} Edges={(@JoeBiden, @KamalaHarris), (@JoeBiden, #Election2020)}

Observation: G has a heavy-tailed degree distribution **Hypothesis:** G follows a power law degree distribution

Degree sequence D=(c.n, c.n/4, c.n/9,...)

$$c \simeq 0.6$$
$$m = cn \log n/4$$
$$degree_{max} = \sqrt{c.n}$$

Twitter graphs have (γ, δ) -clusters

Twitter with $m=10^4$ edges. We see clusters.

k=500 uniform random edges

Observation: clusters in G seem to correspond to large connected components in R $_{5}$

Reservoir sampling (k)

Q: How do we get k uniform random edges in a graph given as a stream of edges?

A: Reservoir sampling [Vitter 80's]: first store $e_1, e_2, \dots e_k$ in R for all i>k, store e_i in R with probability: k/iReplace a random e_i in R by e_i

Detection algorithm to answer the question "does G have a (γ , δ)-cluster?"

- Reservoir sampling R of size $k = \Theta(\sqrt{n} \log n)$
- Observe the giant components of R

Output YES if R has a large enough connected component, NO otherwise.

Next task: analyze our algorithm

2. Random graphs & Giant Components

- ER: Erdös-Renyi G(n,p)
 sampling the complete graph p=k/m produces a sample with k edges on average
 extension: sampling on γ-cluster
 p>1/n => there is a giant component
- 1. CM: Configuration Model [Bollobás 80] $\,\mu\,$ creates random graph with given degree distribution,

Degree distributions: [Molloy-Reed 2008] give sufficient conditions => giant comp.

3. Our model: CM | ER

With CM, generate a graph with a power law degree distribution D Then take uniform samples (k edges)

3. Main result

Detection Algorithm A(γ , δ **)** • Reservoir Sampling $k = \frac{c.\sqrt{n}.\log n}{4.\gamma.\delta}$ • Let C be the largest connected component If $|C| \ge \lambda = \Theta(n^{1/8}.\log^2 n)$ Accept, else Reject

1-way stochastic Approximation (μ)

Lemma 1. If G has a (γ , δ)-cluster, then A accepts with h.p.

Theorem 1. If G is a random graph from μ with no (γ , δ)-cluster, A rejects with h.p.

If G has a (γ , δ)-cluster

Lemma 1. Let G have $m = cn \log n/4$ edges. If G has a (γ, δ)-cluster, then there is a giant component in the Reservoir with h.p.

Proof: Reservoir(k) : Erdös-Renyi G(n,p) p=k/m

$$\begin{aligned} \exists S \text{ s.t. } |S| &\geq \delta.\sqrt{n} \\ \frac{k}{m} &= \frac{c.\sqrt{n}.\log n}{4\gamma.\delta} \cdot \frac{4}{c.n.\log n} = \frac{1}{\gamma.\delta.\sqrt{n}} \geq \frac{1}{\gamma.|S|} \end{aligned}$$

Recall: **p>1/ γ.n => giant component**

Conclusion: there is a giant component in R, and so, A accepts w.h.p.

If G is a random graph from μ :

Lemma 2. W.h.p. G has no γ -cluster of size $\Omega(\sqrt{n})$. (Proof omitted)

Proof of Theorem 1: If G is a random graph from μ with no (γ , δ)-cluster, A rejects with h.p.

Molloy-Reed (2008) give sufficient conditions on a degree distribution D for the configuration model to have no giant component w.h.p. : if

- D is "well-behaved"
- $Q(D) = E(D^2) 2 E(D) < 0$
- Conditions on maximum and average degree

^{21/09/20}then |largest connected component| < b. $n^{1/4}$

Analysis of degree distribution D_R in R

Difficulty: D_R is probabilistic

First, analyze $E(D_R)$ to prove the Molloy Reed conditions

- *E*(D_R) is well behaved with h.p (uniform convergence,....)
- Maximum degree and Average degree conditions
- Q(*E*(D_R)) <0

Second, modify the probability space

Configuration: first and last

Configuration.last: sample first, then match

Analysis with h.p. of the Molloy Reed conditions

- D_R is well behaved with h.p (uniform convergence,....)
- Maximum degree and Average degree conditions
- Q(D_R) <0

Goal: produce a deterministic degree sequence

Sketch of the proof of theorem 1

If G is a random graph from μ with no (γ , δ)-cluster, A rejects with h.p.

Consider a degree sequence coupling degree i and n. Apply Molloy-Reed, deduce bound on size of max connected component C.

$$Prob_{\text{Configuration}-\text{last}}[|C| \le k^{1/4}] = Prob_{\mu,\Omega}[|C| \le k^{1/4}] \rightarrow_{n \to \infty} 1$$

Thus R has no giant component with h.p. Recall Lemma 2: G has no (γ , δ)-cluster w.h.p. **Conclusion:** Detection algorithm is correct with h.p.

4. Other result (1) : Space lower bound

Multiparty Disjointness Problem (n,q): q parties, 1-way communication, DISJ(n,q) Bahmani et al. 2012: BKV-reduction

 $DISJ(n,\sqrt{n}) \prec \exists (\gamma,\delta) - cluster$

Other result (2): Reconstruction algorithm

Assume that G has a clique (y=1) of size $\Omega(\sqrt{n})$.

Q: Can we reconstruct the Clique from the Reservoir?

A: Output 2-core(largest connected component(Reservoir))

1/10/20

Other result (3): Dynamic graphs

Sliding windows (old edges disappear) Reservoirs for each window

Dynamic Algorithm: keep the large connected components of the Reservoirs for each window.

Goal: measure the changes in the giant components.

Conclusion

Problem: Existence of a (γ, δ) -cluster, Maxclique

Not so hard for social graphs.

Main result: Streaming algorithm with space $k = \Theta(\sqrt{n} \log n)$

Main notion: 1-way stochastic approximation(μ): If G has a (γ , δ)-cluster, then A accepts with h.p. If G is a random graph from μ with no (γ , δ)-cluster, A rejects with h.p.