#### **Frequency Distribution testing**

Michel de Rougemont University Paris II & IRIF CNRS

(Joint work with Claire Mathieu)

#### **Motivations**

- 1. Decide very quickly Statistical constraints
- 2. SAT panorama (n variables with densities, m clauses)



Heuristics adapted for each area, associated with a statistical constraint.

- 3. Non worst-case complexity
- 4. L.L.M. How to represent  $P(t_k | t_1, t_2, \dots, t_{k-1})$

#### How is the distribution given?

- 1. Distribution as an Oracle
  - Sample D : output (a,b) with probability p(a,b)
  - Sample a with probability p(a | b)

- 2. Streaming data
  - Stream of objects: a,b,a,c,a,a,b.....
  - Stream of texts: all the text on the web.....

Distribution D defined by the frequencies of letters, words,.... Reservoir sampling gives samples on D.

#### **Standard problems**

Domain of size n

- 1. Is the distribution D close to:
  - A fixed distribution (power law, for example)
  - Uniform distribution

2. Is 
$$D = D_1 * D_2$$
?  
 $D_1 = D_2$ ?

#### **Frequency distributions**

Stream of objects: a,c,a,c,a,a,b,c ..... c,a,b,b,a,b,b,a.....





#### Frequency distribution: Domain={1,2,...n} Decreasing function



#### Plan

- 1. Distribution Testing
  - Total variation distance
  - Is D close to the Uniform distribution
- 2. Frequency Distribution Testing
  - Relative Frechet distance
  - Is D close to the Uniform distribution:  $\Omega(n)$  space
  - Smooth Decreasing distributions: O(log<sup>2</sup> n) space

Property Testing framework: algorithm A s.t.

- If D=Uniform distribution, A(D)=1
- If D is  $\epsilon$ -far from the Uniform distribution, Prob [A(D)=0]> 1- $\delta$

### 1. Uniformity testing (Cannone 2023)

|                                     | Sample<br>complexity            | Notes                                         | References                                                                                                |
|-------------------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Collision-based                     | $rac{k^{1/2}}{arepsilon^2}$    | "Natural"                                     | Goldreich and<br>Ron, 2000;<br>Diakonikolas<br><i>et al.</i> , 2019b                                      |
| Unique<br>elements                  | $rac{k^{1/2}}{arepsilon^2}$    | Low sensitivity $\varepsilon \gg 1/k^{1/4}$   | Paninski, 2008                                                                                            |
| Modified $\chi^2$                   | $rac{k^{1/2}}{arepsilon^2}$    | (None)                                        | Valiant and<br>Valiant, 2017;<br>Acharya <i>et al.</i> ,<br>2015;<br>Diakonikolas<br><i>et al.</i> , 2015 |
| Empirical<br>distance to<br>uniform | $rac{k^{1/2}}{\varepsilon^2}$  | Low sensitivity                               | Diakonikolas<br>et al., 2018                                                                              |
| Random binary<br>hashing            | $\frac{k}{\varepsilon^2}$       | Suboptimal, but<br>fast                       | Acharya et al.,<br>2020d                                                                                  |
| Bipartite<br>collisions             | $\frac{k^{1/2}}{\varepsilon^2}$ | Tradeoff possible                             | Diakonikolas<br>et al., 2019a                                                                             |
| Empirical<br>subset<br>weighting    | $\frac{k^{1/2}}{\varepsilon^2}$ | Tradeoff possible $\varepsilon \gg 1/k^{1/4}$ | Acharya et al.,<br>2022                                                                                   |

#### **Collision-based tester**

Sample $X_1$ ,  $X_2$ , ...  $X_m$ CountCollisions

Compute: 
$$Z = \frac{\sum_{1 \le s \le t \le n} 1\{X_s = X_t\}}{n(n-1)/2}$$
  $E(Z) = ||p||_2^2$ 

General:  $||p - q||_2 \le \frac{1}{2} ||p - q||_1 \le \frac{\sqrt{n}}{2} ||p - q||_2$ If q is uniform:  $||p - q||_2^2 = \sum_i (p(i) - 1/n)^2 = ||p||_2^2 - 1/n$ 

 $||p-q||_1 \ge \varepsilon \rightarrow ||p||_2^2 \ge (1+4\varepsilon^2)/n$ 

Study Var(Z), apply Chebyshev inequality

#### 2. Frequency distributions

Stream of objects: a,c,a,c,a,a,b,c ...... (a,b),(a,c),(b,c).....

Streaming algorithm in space **O(poly(log n))** to decide if the frequency distribution g of the stream is close to a given distribution f?

Frequency distribution (absolute values):



#### **Distances between distributions**

- 1.  $L_1$ ,  $L_2$  ...  $L_p$
- 2. EMD
  - Earth-moving distance
- 3. Fréchet
  - Absolute/relative
- 4. Kullback-Liebler Divergence

## Fréchet relative distance y\*(1+ ε<sub>2</sub>) x\*(1+ ε<sub>1</sub>) 2 3 1 n Degree distributions: f(i)=#v: degree(v)=i

Are And I close ?

#### **Results ( n items)**

Is g close to the uniform distribution f ?
Ω(n) space

Communication Complexity (reduction from Index)

- 2. Smooth and decreasing distributions f
  - Step compatible (Smooth): every point belongs to a complete Frechet rectangle

• 
$$\gamma - decreasing: f(\gamma, t) \leq \frac{f(t)}{2}$$

Main result: Streaming tester with O(log<sup>2</sup> n) space





#### **Frequent items**

- 1. Deterministic algorithms
  - Misra-Gries
  - Spacesaving (K=3, additive error)



- 2. Randomized algorithms
  - Count-Min-Sketch

# **Simplified Tester:** log n substreams with Spacesaving $z_{i} = \left| \left(1 + \varepsilon_{1}^{2}\right)^{i} \right| \qquad a_{i} = \left| \frac{z_{i} \cdot \varepsilon_{1}^{2}}{\log \log n} \right|$



#### Tester

- 1. Details
  - Ignore z<sub>i</sub> close to the discontinuities of f
  - Spacesaving table of size O(log n . log log n)
  - Exact counting if  $\varepsilon_2 f(z_i) \le f(n)$
- 2. Key points
  - If f is  $\gamma$ -decreasing, Spacesaving guarantees relative errors.
  - If f,g are smooth and  $\neg (f \sim_{3\varepsilon_1, 3\varepsilon_2} g)$ 
    - $\rightarrow$   $\exists$  ( $\varepsilon_1, \varepsilon_2$ ) separating rectangle
    - Some  $z_i$  will witness the separating rectangle
    - The tester will reject with h.p.



#### **Extensions**

- 1. Tuples in dimension d:  $(a_1, a_2, \dots, a_d)$ 
  - Domain size: n<sup>d</sup>
  - Frequency of the Marginals: hash on the projections
- 2. Questions
  - Independence of subsets
  - Marginals are close

$$D = D_1 * D_2 ?$$
$$D_1 = D_2$$

#### Conclusion

1. Relative Frechet distance

- 2. Frequency distribution testing
  - Uniform testing is hard
  - Smooth and decreasing frequency distributions are « easy »

(Zipf, Power law, ....)

3. Extensions to other properties